



### ECHOCARDIOGRAPHIC EVALUATION OF VALVULAR STENOSIS

MELISSA R. CUNDANGAN, MD, FPCP, FPCC, FPSE





## **AORTIC STENOSIS**

### **AORTIC STENOSIS**

- Obstruction to LV outflow
- Decrease in aortic valve area
  - Normal: 3.0 4.0 cm<sup>2</sup>
  - Mild : 1.5-2.0 cm<sup>2</sup>
  - Moderate : 1.0 1.5 cm<sup>2</sup>
  - Severe: < 1.0 cm<sup>2</sup>



Valvular Hear Disease, Chapter 63, Braunwarld's Heart Disease 10<sup>th</sup> Edition 2014

## **AORTIC STENOSIS**

Causes:

- Congenital (unicuspal, bicuspal, quadricuspal)
- Rheumatic
- Calcific/ Degenerative





fppt.com

EAE/ASE recommendations for Echocardiographic assessment of valve stenosis, European Journal of Echocardiography 2009

#### A. Evaluate the anatomy of the AV



EAE/ASE recommendations for Echocardiographic assessment of valve stenosis, European Journal of Echocardiography 2009













# B. Determine the aortic valve area by Continuity Equation



Figure 4 Schematic diagram of continuity equation.







EAE/ASE recommendations for Echocardiographic assessment of valve stenosis, European Journal of Echocardiography 2009

- C. Determine the transaortic jet velocity
- measured using continuous-wave (CW) Doppler



Valvular Hear Disease, Chapter 63, Braunwarld's Heart Disease 10th Edition 2014

# D. Determine the transaortic gradient

Valvular aortic stenosis





EAE/ASE recommendations for Echocardiographic assessment of valve stenosis, European Journal of Echocardiography 2009

#### Table 3 Recommendations for classification of AS severity

|                                                | Aortic sclerosis | Mild                    | Moderate                                 | Severe                               |
|------------------------------------------------|------------------|-------------------------|------------------------------------------|--------------------------------------|
| Aortic jet velocity (m/s)                      | ≤2.5 m/s         | 2.6-2.9                 | 3.0-4.0                                  | >4.0                                 |
| Mean gradient (mmHg)                           | -                | <20 (<30 <sup>a</sup> ) | 20-40 <sup>b</sup> (30-50 <sup>a</sup> ) | >40 <sup>b</sup> (>50 <sup>a</sup> ) |
| AVA (cm <sup>2</sup> )                         | -                | >1.5                    | 1.0-1.5                                  | <1.0                                 |
| Indexed AVA (cm <sup>2</sup> /m <sup>2</sup> ) |                  | >0.85                   | 0.60-0.85                                | <0.6                                 |
| Velocity ratio                                 |                  | >0.50                   | 0.25-0.50                                | < 0.25                               |



EAE/ASE recommendations for Echocardiographic assessment of valve stenosis, European Journal of Echocardiography 2009

- LOW FLOW LOW GRADIENT AORTIC STENOSIS
- PARADOXICAL LOW FLOW LOW GRADIENT AORTIC STENOSIS



Baseline echo AVA: 0.96 cm2 PIG: 57mmHg MG: 38 mmHg EF 31%





Low flow, low gradient, pseudo-severe aortic stenosis

#### **PSEUDOSEVERE AORTIC STENOSIS**

- will exhibit an increase in the AVA
- Ittle change in transvalvular gradient in response to the increase in transvalvular flow rate



Low flow, low gradient true-severe aortic stenosis

#### **TRUE SEVERE AORTIC STENOSIS**

- will have no or minimal increase in AVA
- marked increase in gradient when flow is increased



#### REST

- AVA: 0.96cm2
- MG 38
- PIG: 57
- EF: 31%

## TRUE SEVERE AORTIC STENOSIS

TOM DOPE DORO

- AVA: 0.99cm2
- •MG: 51
- PIG: 76
- EF: 41% ( 32% inc)



fppt.com

M3 M4

## **Paradoxical Low flow Low gradient AS**

- Elderly female
- Associated with HTN, DM

#### **Echo Characteristics**

- Severely thickened and calcified AV
- AVA < 1.0; MVG <40mmHg
- EF ≥ 50%
- Small LV cavity size (LVEDD <47mm, LVEDV <55mL</li>
- RWT of >0.5
- Impaired global longitudinal strain <15%</li>
- SV index of <35mL/m2



Hemodynamic Progression

- annual decrease in valve area : 0.12 cm<sup>2</sup>/year
- annual increase in jet velocity of 0.32 m/sec/year

Follow-up Echo

- every year: severe AS
- every 1 to 2 years for moderate AS
- every 3 to 5 years for mild AS.



Valvular Hear Disease, Chapter 63, Braunwarld's Heart Disease 10th Edition 2014





## **MITRAL STENOSIS**

#### **MITRAL STENOSIS**

 most frequent valvular complication of rheumatic fever

Other causes:

- Congenital
- Obstruction of LV inflow by LA tumor/mass (myxoma, thrombus, vegetation)
- extensive mitral annular calcification



#### A. Appearance of the MV and the mobility of its leaflets







EAE/ASE recommendations for Echocardiographic assessment of valve stenosis, European Journal of Echocardiography 2009 fppt.com

- B. Determine the valve area
- 1. Planimetry
- Pressure Half Time
  MVA = 220/PHT
- 3. Continuity Equation



EAE/ASE recommendations for Echocardiographic assessment of valve stenosis, European Journal of Echocardiography 2009

4. PISA

- B. Determine the valve area
- 1. Planimetry
- Pressure Half Time
  MVA = 220/PHT
- 3. Continuity Equation

4. PISA



EAE/ASE recommendations for Echocardiographic assessment of valve stenosis, European Journal of Echocardiography 2009



PHT = 211 $MVA = 1.04 cm^{2}$ 



PHT = 159

 $MVA = 1.38 cm^2$ 



#### C. Determine the Mean Valve gradient







Table 9Recommendations for classification of mitral stenosisseverity

|                                   | Mild | Moderate | Severe |
|-----------------------------------|------|----------|--------|
| Specific findings                 |      |          |        |
| Valve area (cm²)                  | >1.5 | 1.0-1.5  | <1.0   |
| Supportive findings               |      |          |        |
| Mean gradient (mmHg) <sup>a</sup> | <5   | 5-10     | >10    |
| Pulmonary artery pressure (mmHg)  | <30  | 30-50    | >50    |

**ASSOCIATED FINDINGS:** 

- Left atrial enlargement
- LA/ LAA thrombus
- RV dilatation and dysfunction
- Pulmonary hypertension



# TRICUSPID STENOSIS



### **TRICUSPID STENOSIS**

- Uncommon
- Almost always due to RHD
- Other causes:
- Congenital tricuspid atresia
- RA tumor/mass (myxoma, thrombus, vegetation)
- Carcinoid Syndrome





#### ECHO EVALUATION OF TRICUSPID STENOSIS

 A. Determine valve morphology and mobility of the leaflets



#### ECHO EVALUATION OF TRICUSPID STENOSIS

B. Measure the valve area TVA =  $190 \div PHT$ 

C. Measure the mean gradient



TVI=60 cm; mean grad = 9 mmHg P1/2t = 173 ms

#### ECHO EVALUATION OF TRICUSPID STENOSIS

Table 10 Findings indicative of haemodynamically significant tricuspid stenosis

Specific findings Mean pressure gradient Inflow time-velocity integral  $T_{1/2}$ Valve area by continuity equation<sup>a</sup> Supportive findings Enlarged right atrium  $\geq$  moderate Dilated inferior vena cava

≥5 mmHg >60 cm ≥190 ms <1 cm<sup>2a</sup>



# PULMONIC STENOSIS

## **PULMONIC STENOSIS**

#### Causes:

- Congenital
- Rheumatic
- Carcinoid Syndrome

#### ECHO EVALUATION OF PULMONIC STENOSIS

A. Determine valve morphology and mobility of the leaflets



#### ECHO EVALUATION OF PULMONIC STENOSIS

B. Measure the peak velocity and gradient across the valve





#### ECHO EVALUATION OF PULMONIC STENOSIS

| Table 11 Grading of pulr                    | Grading of pulmonary stenosis |              |           |  |  |  |
|---------------------------------------------|-------------------------------|--------------|-----------|--|--|--|
|                                             | Mild                          | Moderate     | Severe    |  |  |  |
| Peak velocity (m/s)<br>Peak gradient (mmHg) | <3<br><36                     | 3-4<br>36-64 | >4<br>>64 |  |  |  |



- Echocardiography is the primary non invasive imaging tool for the assessment of valve stenosis
- Echocardiographic evaluation should include determination of valve morphology, measurement of valve area, transvalvular gradient and velocity as well as to look for other associated abnormalities
- It is essential to combine all 2D and Doppler data in grading the severity of stenosis and not relying only in one specific parameter.



## **SUMMARY**