

Constriction/ Restriction

PP16 Imaging Conference

Bicol Hospital, Legaspi City, Philippines July 2016

Lucy Safi, DO Massachusetts General Hospital

UNCLASSIFIED

PACIFIC PARTNERSHIP 2016

• Why is it important?

- Important therapeutic implications
 - Pericardiectomy
 - Heart failure management and treatment of underlying disease

• Normal pericardium

Restriction cardiomyopathy

Constrictive pericarditis

Differentiating between the two processes

Pericardium

- Fibroelastic sac surrounding the heart
- Two layers
- Physiologic pericardial fluid <50 mL

PACIFIC PARTNERSHIP 2016

7

Restrictive Cardiomyopathy

Disease of the myocardium

Predominant diastolic, rather than systolic, dysfunction

Pulmonary systolic pressure usually is moderately to severely elevated UNCLASSIFIED

• Exercise intolerance

 Impaired ability to augment cardiac output with tachycardia because diastolic restriction of filling

 Peripheral edema, hepatomegaly, ascites, anasarca

• Highly prone to developing atrial fibrillation

Restrictive Cardiomyopathies

Noninfiltrative

- Idiopathic
- Hypertrophic
- Radiation
- Eosinophilic

Infiltrative

- Amyloidosis
- Sarcoidosis
- Gaucher disease
- Hurler disease

PACIFIC PARTNERSHIP 2016

Storage Disease

- Hemochromatosis
- Fabry Disease
- Glycogen storage disease

SIFIED

- Non-dilated thick-walled LV
- Abnormal diastolic function
- RV free wall thickening
- Bi-atrial enlargement
- Elevation of pulmonary pressures
- Elevation of RA pressures

Doppler Features of Restrictive Cardiomyopathy

- Mitral inflow E/A ratio > 2.5
- DT of E velocity < 150 msec,
- IVRT < 50 msec
- Decreased septal and lateral e' velocities (3–4 cm/sec)
 - -Lateral > septal e' velocity
- E/e' ratio > 14
- Inc LA volume index >50 mL/m²

E/A = 1.7 DT = 140 E' = 4 E/E' = 17

• Disorder of protein metabolism which results in protein deposition in organs and tissues

 Amyloid deposition begins in subendocardium and extends within the myocardium between the muscle fibers

MAIN TYPES OF AMYLOIDOSIS ISOLATED DEPOSITS

TYPE	SOURCE of AMYLOID	ORGANS INVOLVED
AL (Primary) Amyloidosis Amyloid Light-Chain	Bone Marrow (Light chains produced by plasma cells)	Kidneys, Heart, Liver, GI system, Nervous system
AA (Secondary) Amyloidosis Amyloid A Protein	Circulating inflammatory protein (Serum amyloid A)	Kidneys, Liver
TTR (Familial) Amyloidosis Mutant Transthyretin	Unstable, mutant transthyretin produced in the liver	Nervous system, Heart
SSA (Senile systemic) Amyloidosis Seniors	Wild-type (normal) transthyretin	Heart

Echocardiographic Features of Amyloid Infiltration

- Increased LV wall thickness ("ground glass")
- Increased RV wall thickness
- Small LV; normal or reduced systolic function
- Pericardial effusion; big LA; thick atrial septum
- Valve thickening; mild regurgitation
- E/A ratio >2
- Decleration time <150 ms
- PV: small S wave, large D wave; S/D ratio <0.5

76 year old man with senile cardiac amyloidosis, Afib, ICD presents with generalized weakness

UNCLASSIFIED

PACIFIC PARTNERSHIP 2016

13

35 year old man being evaluated for heart/liver transplant for history of hemochromatosis

 Initially characterized by diastolic dysfunction and arrhythmias and in later stages by dilated cardiomyopathy

- Diagnosis of iron overload is established by elevated transferrin saturation (>55%) and elevated serum ferritin (>300 ng/mL)
- Genetic testing for mutations in the HFE gene

Hemochromatosis

23

SEPTAL

CMR T2-Weighted Images. Both the myocardium & liver (L) show decreased signal intensity compared to trapezius (T) skeletal muscle

37 year old man with hypertension, end stage renal disease on dialysis, and Fabry's disease on RV biopsy

Fabry's Disease

- X-linked, lysosomal storage disease
- Dysfunctional metabolism of sphingolipids
- Mutation in GLA gene
 - Makes enzyme αgalactosidase A
 - Build up of globotriaosylceramide

- Symptoms/clinical findings
 - Acroparesthesias
 - Angiokeratomas
 - Hypohidrosis
 - Corneal opacity
 - Tinnitus and hearing loss
 - Progressive kidney damage
 - Cardiomyopathy
 - Stroke

Constrictive Pericarditis

Constrictive Pericarditis

- Long-standing inflammation that leads to pericardial scarring with thickening, fibrosis, calcification
- Loss of normal elasticity of the pericardial sac
- Characteristic hemodynamic changes occur from changes in intrathoracic respiratory pressure with a fixed end-diastolic ventricular volume

Constrictive Pericarditis

- Etiology
 - Idiopathic
 - Post-infectious: TB, viral, other
 - Recurrent pericarditis
 - Cardiac surgery
 - Radiation
 - Trauma
 - Malignancy

Signs

- Right >> Left HF
- Elevated JVP with prominent Y descent
- Kussmal's sign
- Pericardial knock
- Edema
- Ascites

Calcified Pericardium

UNCLASSIFIED

PACIFIC PARTNERSHIP 2016

Figure 5. Chest CT from a patient with pericardial constriction showing thickened pericardium (arrows) and a left pleural effusion.

William C. Little, and Gregory L. Freeman Circulation. 2006;113:1622-1632

Copyright © American Heart Association, Inc. All rights reserved.

Constrictive Pericarditis

Constrictive Pericarditis: Pathophysiology

- Marked restriction of filling
- Elevation and equilibration of filling pressures in all heart chambers
 - Early to mid diastole ventricular filling is abrupt and rapid
 - This filling abruptly ceases when the intracardiac limit reaches its set limit
- Systemic venous congestion leads to hepatic congestion, peripherial edema, ascites, and sometimes anasarca

With tamponade, diastolic filling is impaired in both early and late diastole due to the elevated pericardial pressures "compressing" the heart. With constriction, early diastolic filling is rapid but ends abruptly when the volume limits of the rigid pericardial space are reached

CONSTRICTION TAMPONADE Velocity Time Time

PACIFIC PARTNERSHIP 2016 Braunwald's Heart Disease.

Constriction: Hemodynamics

- RA: elevated pressure with "M" or "W" pattern
- RV: "dip and plateau" or "square root" sign
- Diastolic equalization of LV and RV pressures
 - -Volume loading
- Systolic discordance of LV and RV pressures

Tamponade

Constriction

Constriction: Diastolic Equalization

"Dip and plateau"

PACIFIC PARTNERSHIP 2016

Echo findings in Constriction

- LV size and systolic function typically normal
- M-mode may show persistent pericardial thickening with low-gain settings
- >25% inc in MV inflow velocities seen with expiration
- Septal bounce
- IVC and hepatic vein plethora – Diastolic HV flow reversal
- Mitral E wave velocity usually < 160 msec
- Typically normal PASP

Thick pericardium that persists at low gain settings

Doppler Findings in Constriction

- Abnormal passive filling of the ventricles during early diastole → High E velocity
- Tissue Doppler: annulus reversus
- Respiratory variation in ventricular filling – Inspiration
 - MV inflow: decreases >25%
 - TV inflow: increases >40%
- Hepatic venous flow reversal with expiration

Normal

Constriction

Restriction

UNCLASSIFIED

Tricuspid Valve In-Flow

Tricuspid inflow

– E wave increase ≥ 40% with inspiration

Doppler Findings: Constrictive Pericarditis

- Hepatic vein
 - Expiration: Enhanced diastolic flow reversal

Diastolic Septal Bounce

Rapid filling during early diastole leads to asymmetrical filling of the RV and LV creating a fluctuating pressure gradient and an abrupt shift of the septum

UNCLASSIFIED

Dilation and lack of respiratory variation in IVC

• Different etiologies

Differentiation of Constriction vs. Restriction

	Constrictive pericarditis	Restrictive cardiomyopathy
Mechanism s of disease	Cardiac volume constrained by inelastic pericardium resulting in impaired ventricular filling	Restriction of filling from impaired ventricular diastolic filling
Physiologic al response	Changes in intrathoracic pressure not transmitted to cardiac chambers (obliteration of pericardial space)	Normal respiratory variation in intrathoracic pressure transmitted normally to cardiac chambers
Ventricular interaction	Greatly enhanced	Unchanged
Intrinsic myocardial function	Normal	Abnormal

Differentiation of Constriction vs. Restriction

- Different etiologies
- Similar clinical presentations
- Similar physical exam signs
- Thick pericardium is not necessary or sufficient to dx constriction
- Overlapping echo & hemodynamic features

	Constriction	Restriction
Prominent y decent in venous pressure	Present	Variable
Paradoxical pulse	~1/3 cases	Absent
Pericardial knock	Present	Absent
Equal Right and Left sided pressures	Present	Left at least 3-5 mmHg > right
Filling Pressures > 25 mmHg	Rare	Common
PASP > 60 mmHg	No	Common
Hepatic veins	Inc expiratory flow reversal	Inc inspiratory flow reversal
"Square root" sign	Present	Variable
Respiratory variation inflows velocities	Exaggerated	Normal
Ventricular wall thickness	Normal	Usually Increased
Atrial Size	Possible LA enlargement	Bi-atrial enlargement
Septal Bounce	Present	Absent
Tissue Doppler e' velocity	Increased	Reduced
Pericardial thickness	Increased	Normal

Constriction

- Deformation of the LV and early diastolic recoil were attenuated in the circumferential direction
- Restriction

Attenuated in the longitudinal direction

Differentiation of Constriction vs. Restriction

Echocardiographic Parameters

Echocardiographic Parameters				
Parameter	Constrictive pericarditis	Restrictive cardiomyopathy		
Septal bounce	Yes	<u>No</u>		
MV inflow respiratory variation	≥25%	None		
TV inflow respiratory variation	>40%	None		
MVDT	Short	<160 ms		
Hepatic vein reversal	Diastolic reversal with expiration	No change		
IVRT	Decrease during expiration Increase during inspiration	No change		
TR duration	Increase	<u>No chan</u> ge		
E:e′	<8–10	>15		
Myocardial mechanics with	Normal longitudinal strain	Decrease longitudinal strain		
strain image	Decrease net-twist angle	Normal net-twist angle		
F [·] Peak transmitral flow velocity at ear	rly diastolic filling phase; e': Peak early diasto	olic mitral annular velocity: E:e': Ratio of I		

ai now velocity at early glastolic filling phase, e : Peak early diastolic mitral annular vel and e' velocities; IVRT: Isovolumic relaxation time; MV: Mitral valve; MVDT: Mitral valve deceleration time; TR: Tricuspid regurgitation; TV: Tricuspid valve.

PACIFIC PARTNERSHIP 2016

 Restrictive cardiomyopathy is a disease of the myocardium and may be due to various etiologies including noninflitrative, infiltrative, and storage diseases

 Constrictive pericarditis is a disease of the pericardium leading to thickening and impairment of diastolic filling

There are a numerous overlapping physical exam, echocardiographic and hemodynamic findings that overlap between the two disease states

Think restrictive cardiomyopathy

- Thick walls, biatrial enlargement
- Decleration time <150 ms
- Decreased septal and lateral e' velocities
 - –Lateral E' velocity > septal
- Elevated PASP

Think constrictive pericarditis

- Septal bounce
- Inspiratory drop in left heart velocities (MV, PV, LVOT)
- Thickened pericardium (not necessary)
- Dilated IVC
- Expiratory hepatic vein diastolic flow reversal

Thank you!