ASE RECOMMENDATIONS FOR CLINICAL PRACTICE

Echocardiography-Guided Interventions

Frank E. Silvestry, MD, FASE, Co-Chair, Richard E. Kerber, MD, FASE, Chair, Michael M. Brook, MD, John D. Carroll, MD, Karen M. Eberman, RDCS, Steven A. Goldstein, MD, Howard C. Herrmann, MD, Shunichi Homma, MD, Roxana Mehran, MD, Douglas L. Packer, MD, Alfred F. Parisi, MD, FASE, Todd Pulverwitz, MD, James Bernard Seward, MD, FASE, Teresa S. M. Tsang, MD, and Mark A. Wood, MD, Philadelphia, Pennsylvania; Iowa City, Iowa; San Francisco, California; Denver, Colorado; Washington, DC; New York, New York; Rochester, Minnesota; Providence, Rhode Island; and Fairfax and Richmond, Virginia

Keywords: Echocardiography, Cardiac ultrasound, Transesophageal echocardiography, Intracardiac echocardiography, 3-dimensional echocardiography, Congenital heart disease, Pericardiocentesis, Transseptal catheterization, Myocardial biopsy, Percutaneous transvenous balloon valvuloplasty, Atrial septal defect, Parent foramen ovale, Hypertrophic cardiomyopathy, Alcohol septal ablation, Cardiac electrophysiology, Left atrial appendage occlusion

I. ABSTRACT

A major advantage of echocardiography over other advanced imaging modalities (magnetic resonance imaging, computed tomographic angiography) is that echocardiography is mobile and real time. Echocardiograms can be recorded at the bedside, in the cardiac catheterization laboratory, in the cardiovascular intensive care unit, in the emergency room—indeed, any place that can accommodate a wheeled cart. This tremendous advantage allows for the performance of imaging immediately before, during, and after various procedures involving interventions. The purpose of this report is to review the use of echocardiography to guide interventions. We provide information on the selection of patients for interventions, monitoring during the performance of interventions, and assessing the effects of interventions after their completion.

In this document, we address the use of echocardiography in commonly performed procedures: transatrial septal catheterization, pericardiocentesis, myocardial biopsy, percutaneous transvenous balloon valvuloplasty, catheter closure of atrial septal defects (ASDs) and patent foramen ovale (PFO), alcohol septal ablation for hypertrophic cardiomyopathy, and cardiac electrophysiology. A concluding section addresses interventions that are presently investigational but are likely to enter the realm of practice in the very near future: complex mitral valve repairs, left atrial appendage (LAA) occlusion devices, 3-dimensional (3D) echocardiographic guidance, and percutaneous aortic valve replacement.

The use of echocardiography to select and guide cardiac resynchronization therapy has recently been addressed in a separate document published by the American Society of Echocardiography and is not further discussed in this document.

The use of imaging techniques to guide even well-established procedures enhances the efficiency and safety of these procedures.

From the University of Pennsylvania Health System, Philadelphia, Pennsylvania (F.E.S., K.M.E., H.C.H.); the University of Iowa, Iowa City, Iowa (R.E.K.); the University of California, San Francisco, San Francisco, California (M.M.B.); the University of Colorado, Denver, Colorado (J.D.C.); Washington Hospital Center, Washington, DC (S.A.G.); Columbia University, New York, New York (S.H., R.M.); Mayo Clinic, Rochester, Minnesota (D.L.P., J.B.S., T.S.M.T.); Brown University, Providence, Rhode Island (A.F.P.); Northern Virginia Cardiology Associates, Fairfax, Virginia (T.P.); and Virginia Commonwealth University Medical Center, Richmond, Virginia (M.A.W.)

Reprint requests: American Society of Echocardiography, 2100 Gateway Centre Boulevard, Suite 310, Morrisville, NC 27560 (E-mail: ase@asecho.org).

0894-7317/$36.00
Copyright 2009 by the American Society of Echocardiography.

213
II. INTRODUCTION

Traditionally, percutaneous cardiovascular interventions have predominantly used angiographic and fluoroscopic guidance, which is limited when interventions involve the myocardium, pericardium, and cardiac valves.

The purposes of this report are to (1) delineate the role of echocardiography in guiding a wide variety of interventional and electrophysiological procedures, (2) discuss the critical echocardiographic aspects of these procedures, and (3) delineate the intraprocedural differences between echocardiographic modalities, comparing transthoracic echocardiography (TTE), transesophageal echocardiography (TEE), and intracardiac echocardiography (ICE) wherever appropriate data are available. We have particularly emphasized the use of ICE where appropriate, because it is the newest of the echocardiographic modalities, and readers may be unaware of some potential applications. Table 1 provides a summary of literature data concerning the use of the different echocardiographic modalities for each of the specific procedures. This report is not intended to provide detailed instructions on “how to” perform these procedures; more specific procedural details are available for review in the referenced documents. Instead, we intend to highlight and illustrate the ways in which echocardiography has had an important impact in the procedures being performed and their outcomes. Summary recommendations are listed in boldface type at the end of each section.

As percutaneous therapy for heart disease continues to advance at a rapid pace, it is inevitable that echocardiographic procedural guidance will continue to evolve rapidly as well. We have sought to keep the material in this report current as of this writing, by adding a section on future directions. Similarly, other modalities, such as magnetic resonance imaging and combined multiple imaging modalities (eg, reconstructed 3D computerized tomography with superimposed real-time echocardiography) will continue to evolve and develop roles in guiding these complex procedures as well.

III. GENERAL IMAGING CONSIDERATIONS

A. TTE

TTE is widely available and portable and offers excellent image quality; as such, it has been used widely in guiding percutaneous noncoronary interventional and electrophysiologic procedures. Most currently available ultrasound systems, including handheld and portable ultrasound systems, offer sufficient 2-dimensional (2D) and Doppler capabilities to guide a variety of interventions, such as echocardiography-guided percutaneous intervention, alcohol septal ablation for hypertrophic cardiomyopathy, percutaneous balloon mitral valvuloplasty (PBMV), and myocardial biopsy. The advent of Doppler tissue imaging has made TTE essential in the optimization of biventricular pacemakers.

B. TEE

TEE has been widely used as an alternative to TTE in guiding complex procedures. TEE offers superior image resolution to TTE and can be used to monitor a variety of interventions, such as percutaneous transseptal closure (PTC) of septal defects, PBMV, transcatheter catheterization, and many others. Compared with TEE, it excels at assessing intraprocedural anatomy and physiology, monitoring catheter position and contact, and excluding thrombus, pericardial effusion, and other complications.

C. ICE

A more recent application of cardiac ultrasound, ICE has also demonstrated great potential for monitoring and guiding interventions. Experimental and clinical studies have demonstrated the utility of ICE in monitoring left ventricular and right ventricular function, delineating anatomy, guiding transseptal punctures and therapy, and biopsy of cardiac masses.1-13

ICE offers imaging that is comparable with or superior to TEE. ICE has been shown to provide significant benefits when used for radiofrequency ablation of atrial fibrillation (AF) and transcatheter atrial septal closure procedures and has become the imaging standard during these procedures at many centers.14-28 In the catheterization laboratory during these procedures, an advantage over TEE is that ICE obviates the need for general anesthesia and for additional echocardiography physician support. Compared with guidance using TEE, ICE has been shown to improve patient comfort, shorten both procedure and fluoroscopy times, and offer comparable cost with TEE-guided interventions.15,17,25,28,29 Additional uses of ICE may include guidance of transseptal catheterization, the placement of LAA occlusion devices, the placement of percutaneous left ventricular assist device cannulas, the performance of PBMV, and many others.5,7,30-33 Diagnostic intracardiac imaging may be considered as an alternative to TEE in selected patients with absolute contraindications to TEE (eg, esophagectomy) or to potentially evaluate anatomic regions

Table 1 Intervventional procedures: use of echocardiography for guidance

<table>
<thead>
<tr>
<th>Interventional Procedure</th>
<th>TTE</th>
<th>TEE</th>
<th>ICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transseptal catheterization</td>
<td>+</td>
<td>++</td>
<td>++ (radial or phased array)</td>
</tr>
<tr>
<td>PMBV</td>
<td>++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Transcatheter closure of ASD, ventricular septal defect, and PFO</td>
<td>+</td>
<td>++</td>
<td>++ (phased array)</td>
</tr>
<tr>
<td>Alcohol septal ablation in HOCM</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Percutaneous mitral valve repair</td>
<td>+</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Percutaneous left ventricular assist device placement</td>
<td>–</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Percutaneous stented aortic valve prosthetic placement</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Balloon or blade atrial septostomy</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Placement of LAA occlusion devices</td>
<td>–</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Myocardial and intravascular biopsy</td>
<td>++</td>
<td>++</td>
<td>++ (phased array)</td>
</tr>
<tr>
<td>Congenital heart disease applications (completion of Fontan procedure, coarctation repair)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Placement of aortic endograft</td>
<td>–</td>
<td>–</td>
<td>+ (radial or phased array)</td>
</tr>
</tbody>
</table>

-, No documented role or benefit in the literature; +, anecdotal reports of use and benefit exist, but further study is needed to delineate; ++, advantages favor use when available; ++++, clearly documented benefit or role.
that TEE may not be able to visualize well because of shadowing from other structures (eg, ascending aortic evaluation, which is not well seen on TEE because of tracheal shadowing in the “TEE blind spot”). The risks of ICE are listed in Table 2.

IV. ECHOCARDIOGRAPHY IN TRANSESSEPTAL CATHETERIZATION

Transseptal catheterization is performed when procedural access to the left atrium is required and is used for PBMV, anterograde aortic balloon valvuloplasty, radiofrequency ablation of AF and other left-sided arrhythmias, transseptal PFO closure, the placement of percutaneous left ventricular assist device cannulas in the left atrium, balloon or blade atrial septostomy, the measurement of complex hemodynamics (such as evaluation of a mechanical aortic valve prosthetic or critical aortic stenosis in which the valve itself cannot be crossed), and, most recently, investigational applications such as the placement of LAA occlusion devices and percutaneous mitral valve repair.34-40 Traditionally, transseptal catheterization has relied on fluoroscopic guidance, in which anatomic structures are not directly visualized.

Observational studies have suggested that TTE or TEE may be helpful in performing this procedure by allowing direct visualization of the transseptal catheter and its relationship to the fossa ovalis. Although echocardiographic imaging is not invariably required for the successful performance of transseptal catheterization, it offers potential advantages over traditional anatomic and fluoroscopic guidance.30,41,50 Anatomic variability in the position and orientation of the fossa ovalis and its surrounding structures may present specific challenges to even those interventional cardiologists with significant transseptal experience, and imaging offers increased safety, with a lower risk for cannulating other spaces adjacent to the fossa. Inadvertent puncture of the intrapericardial aorta is a serious complication of transseptal catheterization, and echocardiographic imaging reduces this risk. Similarly, imaging may decrease the time required for the transseptal puncture to be performed and minimizes the fluoroscopy time required for the procedure. In patients undergoing PBMV who are pregnant, radiation exposure can be reduced with echocardiographic guidance of the procedure, including the transseptal puncture.43 Imaging may also assist those operators without significant transseptal experience who are learning the procedure.

V. ECHOCARDIOGRAPHY-GUIDED PERICARDIOCENTESIS

Fluoroscopic guidance and electrocardiographic needle monitoring have been used to improve the safety of pericardiocentesis,52,53 but

Table 2: Potential risks of ICE

<table>
<thead>
<tr>
<th>Category</th>
<th>Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular</td>
<td>Trauma at catheterization site, bleeding, hematoma, retroperitoneal bleed, perforation of venous structures</td>
</tr>
<tr>
<td>Cardiac</td>
<td>Pericardial effusion, tamponade</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>Atrial premature beats, AF, ventricular ectopy and tachycardia, heart block</td>
</tr>
<tr>
<td>Thromboembolism</td>
<td>Venous, arterial, cutaneous nerve palsy</td>
</tr>
</tbody>
</table>

Figure 1. ICE. Phased-array ICE from the right atrium (RA), demonstrating the tenting of the fossa ovalis (arrow) toward the left atrium (LA) before transseptal catheterization. The length of the catheter is seen in the RA. Early studies of TTE-guided transseptal puncture demonstrated that TTE can delineate the aorta and interatrial septum and the characteristic bulging (or tenting) of the fossa ovalis at a satisfactory location that occurs before transseptal puncture.49 Saline contrast echocardiography with TEE may help confirm needle position in the right atrium before puncture and in the left atrium after puncture. TTE does not always offer sufficient imaging resolution to guide transseptal catheterization, and as such, TEE and more recently ICE have been used when imaging is required. TEE and ICE also provide the ability to choose the exact site of transseptal puncture, which is important in performing advanced mitral valve interventions for mitral regurgitation (MR) because the catheters are more difficult to manipulate and position if the transseptal crossing point is too close to the plane of the mitral valve orifice. Because ICE can be performed without additional sedation or general anesthesia, as well as with minimal additional patient risk and discomfort, it has become the standard at many centers if imaging is required only for the transseptal catheterization aspect of a procedure.7,30,42,43,45,48,50,51

With ICE during a transseptal procedure, recognition of tenting of the interatrial septum identifies the location of the transseptal sheath before puncture (Figure 1). The possibility of perforation of the aorta, pulmonary artery, and atrial wall exists during transseptal catheterization. The injection of a small amount of microbubbles or contrast into the left atrium after the needle has crossed the septum is used to confirm left atrial access (Figure 2). Finally, a guidewire is passed into the left atrium under guidance with ICE to establish stable left atrial access (Figure 3).

Echocardiography offers the potential for improved safety in performing transseptal catheterization, and although it is not invariably required in all procedures, its use is recommended. ICE offers the advantage of not requiring echocardiographic support when performing transseptal catheterization.
complications, including damage to the liver, myocardium, coronary arteries, and lungs, have been reported.54

A. Safety and Efficacy of Echocardiography-Guided Pericardiocentesis
In a Mayo Clinic series, echocardiography-guided pericardiocentesis was successful in withdrawing pericardial fluid or relieving tamponade in 97% of the procedures.55 Major complications (including chamber laceration, intercostal vessel injury, pneumothorax requiring a chest tube, sustained ventricular tachycardia (VT), bacteremia, and death) occurred in 1.2% of patients, and minor complications (including transient cardiac chamber entry, transient arrhythmia, minor pneumothorax, and vasovagal reactions) were noted in 3.2%. 55 The safety and efficacy of echocardiography-guided pericardiocentesis had been shown in various subgroups, including pediatric patients,56 patients who were hemodynamically very unstable after cardiac perforation secondary to invasive percutaneous procedures,57 postoperative patients,58 and patients with malignancies59 or connective tissue diseases.60

B. Technique of Echocardiography-Guided Pericardiocentesis
The following is a guide to only the critical aspects of echocardiography-guided pericardiocentesis. Additional procedural details are documented in the references. Two-dimensional and Doppler studies are performed to assess the size, distribution, and hemodynamic impact of the effusion and to identify the ideal entry site and needle trajectory for pericardiocentesis. The ideal site of needle entry is the point at which the largest fluid collection is closest to the body surface and from which a straight needle trajectory avoids vital structures. Because ultrasound does not penetrate air, the lungs are effectively avoided. Safety is ensured by using sheathed needles and withdrawing the steel needle upon entering the fluid space.

The left chest wall is often the location selected for entry.55 The subcostal route involves a longer path to reach the fluid, passes anterior to the liver capsule, and is directed toward the right chambers of the heart.

The position of a catheter introduced into the pericardial space can be confirmed by the injection of agitated saline, and this is performed if bloody fluid has been aspirated or if the catheter position is in question. The appearance of contrast in the pericardial sac confirms its position (Figure 4). If the catheter is not in the pericardial space, it should be repositioned, or another needle passage should be attempted.

The indwelling catheter is removed once the drainage has decreased (typically to <25 mL in 24 hours) and follow-up echocardiography reveals no significant residual effusion.

C. Precautions and Contraindications
The contraindications to echocardiography-guided pericardiocentesis are few, and even these should be evaluated on a case-by-case basis.
In theory, pericardiocentesis is contraindicated in the setting of myocardial rupture or aortic dissection because of the potential risk for extending the rupture or dissection with decompression. Echocardiography-guided pericardiocentesis with extended catheter drainage can be performed safely and with efficacy at centers with staff members experienced in this technique. Using echocardiography to guide the procedure avoids the radiation associated with fluoroscopy and allows the procedure to be performed in the catheterization laboratory, at the bedside, or in the echocardiography laboratory. Increased safety and markedly lower cost compared with surgery ensure that echocardiography-directed pericardiocentesis is a procedure of choice.

VI. USE OF ECHOCARDIOGRAPHY TO GUIDE MYOCARDIAL BIOPSY

Endomyocardial biopsies are typically performed in the right ventricle to diagnose a wide variety of myocardial disorders, including infiltrative cardiomyopathy and cardiac transplant rejection. Although endomyocardial biopsy is often performed with fluoroscopic guidance alone, some centers use 2D TTE to complement or replace fluoroscopy. Similarly, others have reported using TEE or ICE to guide biopsies of masses in the right heart and aorta in selected patients. With echocardiographic guidance, it is possible to provide a wider choice of biopsy sites. In addition to the ventricular septum, both the right ventricular apex and free wall can be biopsied. Moreover, this approach improves the yield of the biopsy by reducing the number of fibrotic samples due to “bites” in the same site (midventricular septum). This approach may also reduce the likelihood of perforation and damage to the tricuspid valve. Other potential advantages of echocardiography-guided endomyocardial biopsy include the reduction of radiation exposure and portability.

Optimal views on TTE for guiding right ventricular biopsies include the apical 4-chamber view and the subxiphoid 4-chamber view (Figures 5 and 6). The transducer may be positioned more medially (midclavicular line) to optimally visualize the right ventricle during biopsy. Optimal views on TEE include the midesophageal 4-chamber view, as well as the transgastric short-axis and long-axis views. ICE from either the right atrium or the right ventricle can be used for the guidance of right ventricular biopsy. Note, however, that the tip of a catheter cannot always be visualized with certainty.

Other limitations to the use of echocardiography for guiding myocardial biopsy include the difficulty in performing TTE in patients in the catheterization laboratory who are in the supine position and the difficulty in imaging patients such as those with chest tubes and bandages, obesity, or chronic lung disease. TEE and ICE overcome these limitations in image quality, although with the need for additional echocardiography physician support and sedation (for TEE), as well as additional cost and attendant vascular risks (for ICE).

Echocardiography, particularly TTE, is useful as an adjunctive imaging modality in patients undergoing intracardiac and intravascular biopsy procedures. Although TEE and ICE may offer improved imaging over TTE, the additional risk and cost must be outweighed by significant procedural benefits, and the modalities are recommended for use only in highly selected patients.

VII. ECHOCARDIOGRAPHIC GUIDANCE OF PERCUTANEOUS TRANSEPTAL BALLOON MITRAL VALVULOPLASTY

A. General Imaging Considerations

PBMV is performed with fluoroscopic guidance alone at many centers, but radiographic anatomic landmarks can mislead even experienced operators. Kronzon et al. recommended 2D TTE (in the apical 4-chamber and parasternal short-axis views) as a useful adjunct to fluoroscopy during transseptal cardiac catheterization during
PBMV. Pandian et al70 advocated the use of subcostal views to assist PBMV as well. Disadvantages of TTE include that it interrupts the flow of the procedure, potentially interferes with sterile technique, and provides inadequate imaging in some patients.

TEE is an alternative to TTE for guiding PBMV71-75 (S. A. Goldstein, personal communication). The role of TEE before and during balloon mitral valvuloplasty is well established. TEE can be used for patient selection76,77 and for all aspects of online procedural guidance71-75 (S. A. Goldstein, personal communication). It is used to guide the transseptal catheterization and is generally superior to TTE in this regard. TEE is also superior to TTE when it is used to exclude left atrial and LAA thrombus, and it facilitates wire and balloon position before and during inflation (Figure 7). TEE is used to measure transmural gradients and mitral valve area and to assess the degree of MR immediately after each balloon inflation. Finally, TEE can be used to look for complications of PBMV, such as severe MR, pericardial effusion or tamponade, dislodgement of thrombus, and residual ASD. Moreover, some authors have suggested that the use of online TEE can both reduce fluoroscopic and procedure time and improve results71-75 (S. A. Goldstein, personal communication).

ICE provides another alternative for online guidance of PBMV.32,48,78 It provides an excellent view of the fossa ovalis and can be used to guide the transseptal puncture.48 Newer phased-array intracardiac echocardiographic catheters provide pulsed-wave, continuous-wave, color flow Doppler, and Doppler tissue imaging. Thus, like TEE and TTE, ICE can facilitate the immediate assessment of the results of the valvuloplasty, including the transmural gradient, the mitral valve area, the presence or worsening of MR, and the detection of complications, such as cardiac perforation, tamponade, or a torn mitral valve. Like TEE, ICE does not interfere with the catheterization process and can be used for each of the sequential tasks needed to perform mitral valvuloplasty.32,78 The relative value of ICE compared with TTE and TEE has yet to be determined. Cost is a significant consideration, because a phased-array intracardiac echocardiographic catheter costs approximately $2,500 to $3,000, for a catheter that may only be used up to 3 times. Visualization of left-sided structures on ICE may be inferior or superior to that provided by TEE or TTE, depending on the chamber from which the catheter is providing images. In particular, the LAA may not be well visualized when intracardiac echocardiographic images originate only from the right atrium, and the presence or absence of an intracardiac thrombus cannot be confirmed. Imaging from the left atrium or pulmonary artery may overcome this limitation. On the other hand, ICE visualizes the mitral valve structures, especially the subvalvular structures of chordae tendineae and papillary muscles, with superior spatial resolution compared with TEE or TTE.78 Images should be transmitted to a monitor that is easily viewed by the catheterization operator, usually adjacent to the fluoroscopic monitor.

B. Immediate Assessment of Results

Online echocardiography during the procedure is ideally suited for the immediate assessment of the results of PBMV.7 The adequacy of valvulotomy can be determined by evaluating the maximal mitral leaflet separation and by continuous-wave Doppler determination of the mean mitral gradient and mitral valve area. With TEE and ICE in addition, the pulmonary venous flow profile can be assessed, with a more rapid diastolic deceleration expected after successful PBMV.79 Finally, new or worsening MR is sought by color Doppler. Decisions about the adequacy of the procedure versus the need for further dilation should be made on the basis of both echocardiographic and hemodynamic data.

C. Early Detection of Complications

Although uncommon, serious complications do occur with PBMV. The majority of these (eg, the development of severe MR, cardiac perforation and tamponade, ASDs) can be identified accurately and quickly by online echocardiography during the procedure. An increase in the degree of MR occurs in approximately half of patients after PBMV.79,70,80,81 (S. A. Goldstein, personal communication). In most, this increase is mild, but the reported incidence of the development of severe MR is 1% to 6%.74 Acute, severe MR may be caused by tear or rupture of the mitral leaflets, by ruptured chordae tendineae, or rarely by avulsion of a papillary muscle.82 Each of these can be detected readily by echocardiography, particularly by TEE or ICE. Moreover, the presence and severity of MR can be determined without the need for ventriculography.

The incidence of cardiac tamponade during PBMV has been reported to be between 0% and 9%.74,83 Perforation of the atrial free wall at the time of transseptal puncture is the most common cause of bleeding into the pericardial space. Echocardiographic detection of such fluid is immediate and permits rapid pericardiocentesis before major hemodynamic compromise occurs. Perforation of the left ventricle, especially with the double-balloon technique, has also been reported. Online TEE can lead to rapid detection and treatment of this potentially life threatening complication.83

The reported incidence of ASD resulting from PBMV is highly variable depending on the technique used for its detection. A left-to-right shunt at the atrial level is detected by oximetry in only 8% to 25% of patients.73 TTE can detect an atrial shunt after PBMV in 15% to 60% of patients. TEE, a more sensitive technique, has been reported to detect shunts in as many as 90% of patients. ICE, with its excellent visualization of the fossa ovalis, should offer comparable sensitivity. Because the defects are usually small and because left atrial pressure in these patients is high, the small left-to-right shunting jets are easily detected by transesophageal echocardiographic or intracardiac echocardiographic color Doppler imaging. The creation of a small ASD should be considered an expected consequence rather than a true complication in the majority of patients.

Figure 7 TEE. Midesophageal 4-chamber view demonstrating the valvuloplasty balloon (arrow) as it is inflated across the mitral valve. LA, Left atrium; RA, right atrium.
D. Limitations
Several investigators have pointed out that immediately after PBMV, Doppler evaluation of mitral valve area by the pressure half-time method should be interpreted with caution because of a reduced correlation with hemodynamic measurements obtained by cardiac catheterization. This discrepancy may be related in part to acute alterations in left atrial and left ventricular compliance and a reduced initial peak mitral valve gradient.

E. Effect on Outcomes
The use of echocardiographic guidance during the procedure may improve the procedural success and complication rates. Online imaging can provide more precise targeting of the transseptal needle toward the fossa ovalis region of the atrial septum, thereby minimizing the likelihood of perforation. In addition, imaging not only has the potential to reduce the risk for procedural complications but may also allow immediate identification of these complications should they occur, permitting more prompt correction. Moreover, echocardiographic guidance may reduce procedural and fluoroscopic time (S. A. Goldstein, personal communication). Park et al evaluated fluoroscopic guidance only (n = 64) and patients who underwent PBMV with online transesophageal echocardiographic guidance (n = 70). The procedural time was significantly shorter in the latter group (99 ± 48 vs 64 ± 22 minutes; P < .0001). The average fluoroscopic time was also shorter in the TEE-guided group (30 ± 17 vs 19 ± 15 minutes), but this was not statistically significant (P = .25). Echocardiographic guidance may also reduce the risk for worsening MR as a result of the better assessment of the number of balloon inflations required and better positioning of the balloon catheter. Further studies are required to validate the incremental safety and efficacy of echocardiographic guidance to supplement or replace fluoroscopic guidance of PBMV.

Echocardiography provides significant benefit in percutaneous balloon valvuloplasty for mitral stenosis and is recommended for the assessment of patient selection and to assess the adequacy of results. Online intraprocedural echocardiography offers significant advantages compared with fluoroscopic guidance, in monitoring procedural efficacy and monitoring for complications. TEE can also be used to guide the procedure. TTE is recommended for procedural guidance, monitoring for complications, and to assess the adequacy of results, when preprocedural TEE has already been performed. ICE can be used for procedural guidance and provides imaging that is comparable with TEE.

VIII. ECHOCARDIOGRAPHIC GUIDANCE OF ATRIAL SEPTAL DEFECT AND PATENT FORAMEN OVALE CLOSURE

A. Introduction
Percutaneous transcatheter closure of ASDs and PFO is an increasingly attractive alternative to surgical repair. These procedures are widely performed for hemodynamically significant left-to-right shunting, to prevent recurrent paradoxical embolism, and for the patency-orthodoxy syndrome. A variety of different approaches are used to guide PTC of ASDs and PFO, each with unique advantages and disadvantages. These include primary fluoroscopic guidance and echocardiographic guidance with TTE, TEE, and, most recently, ICE.

B. Echocardiographic Modalities
TTE, TEE, and ICE are used to evaluate and guide the percutaneous closure of PFOs and ASDs. TTE has the advantage of offering multiple planes to evaluate the device and atrial septum, but it has limited ability to interrogate the lower rim of atrial septal tissue above the inferior vena cava after device placement, because the device interferes with imaging in virtually all planes. In addition, because the septum is relatively far from the transducer (relative to TEE or ICE), color imaging is suboptimal in larger patients. Some centers, however, use TTE for monitoring in all patients. In adult patients, TTE typically provides more limited imaging of the interatrial septum and surrounding structures, and as such, most adult centers typically use TEE or ICE to guide PTC.

Transesophageal echocardiographic guidance has been described extensively in adult patients and offers the advantages of providing real-time, highly detailed imaging of the interatrial septum, surrounding structures, catheters, and closure device. TEE requires either conscious sedation, with attendant aspiration risk in a supine patient, or general anesthesia, with an endotracheal tube to minimize this risk. This approach also requires a dedicated echocardiographer to perform the TTE while the catheterization operator performs the closure procedure, as well as anesthesia support personnel if general anesthesia is used.

ICE provides imaging of the interatrial septum and surrounding structures that is comparable with TEE but does not require additional sedation or general anesthesia to perform. Currently available intracardiac echocardiographic systems provide a single-use 8Fr to 10Fr mechanical or phased-array intracardiac ultrasound–equipped catheter and require additional 8Fr to 11Fr venous access. The development of newer, smaller caliber catheters has allowed the use of ICE in smaller pediatric patients. In addition to obviating the need for general anesthesia in adults, ICE offers the potential to reduce the need for additional echocardiographic support, because the operator performing the percutaneous closure can also manipulate the catheter. At some centers, however, additional echocardiography expertise is used to assist in ICE during these procedures. This is particularly helpful in patients with large defects, for whom the risk for misplacement or embolization is greater. In these patients, continuous evaluation with echocardiography during device placement can prevent complications of the procedure.

Additional advantages of ICE in the guidance of PTC compared with TEE include shorter procedure and fluoroscopy times, improved imaging, and the addition of supplementary incremental diagnostic information, and as such, it is emerging as the standard imaging modality for evaluation of the interatrial septum and for guiding PTC. ICE can be used as the primary imaging modality, without supplemental TTE or TEE. Recently, ICE has been shown to offer comparable cost with TEE-guided PTC when general anesthesia is used for those undergoing TEE-guided closure.

C. General Procedural Considerations
A number of different devices are currently in use for PTC, and the method of implantation is variable and unique to each device. The mechanism of closure of all devices ultimately involves stenting the defect, with subsequent thrombus formation and neoendothelialization along the interatrial septum.

Preprocedural assessment of the interatrial septum includes evaluation of the entire interatrial septum and surrounding structures. A PFO is defined as any anatomic communication through the foramen ovale, and a stretched PFO is defined when resting or intermittent left-to-right
flow on color Doppler imaging is seen (Figure 8). Right-to-left shunting through a PFO is typically demonstrated by the injection of agitated saline microbubbles at rest and with provocative maneuvers such as the Valsalva maneuver. An atrial septal aneurysm is typically defined as 11 to 15 mm of total movement of a 15-mm base of atrial septal tissue.

Echocardiography offers the ability to define ASD type (ostium secundum, ostium primum, sinus venosus, or coronary sinus), maximum ASD diameter, and defect number if multiple defects are present. Presently, only ostium secundum ASDs are amenable to PTC, and an interatrial septum that contains multiple small fenestrations may not be suited to PTC with currently available devices. Defects up to 40 mm in diameter have been closed successfully via PTC, as have multiple ASDs and those associated with atrial septal aneurysms. Associated abnormalities of the pulmonary veins, inferior vena cava, superior vena cava, coronary sinus, and atroventricular valves should be excluded. Consideration of the size of the atrial septal rim of tissue surrounding the defect is important in evaluating patients for successful PTC, and a surrounding rim of 5 mm is generally considered adequate. The inferior and superior rims may be particularly important for successful PTC, although small series have reported success in patients with deficient rims. In smaller patients, assessment of total septal length is an important additional consideration, because this may limit the size of the device that can be placed successfully.

Echocardiography is recommended to guide PTC of PFO and ASDs. All modalities of echocardiography can be used, but ICE should be considered when suitable expertise is available. Numerous factors must be considered when choosing the ideal echocardiographic modality for procedure guidance, including the patient population, specific anatomy, and local expertise.

IX. ECHOCARDIOGRAPHIC GUIDANCE OF ALCOHOL SEPTAL ABLATION FOR HYPERTROPHIC OBSTRUCTIVE CARDIOMYOPATHY

A. Introduction and Indications

Surgical myectomy for severely symptomatic patients with hypertrophic obstructive cardiomyopathy (HOCM) has been performed for >40 years but is performed at only a relatively small number of experienced centers with acceptable morbidity and mortality. Atrioventricular sequential pacing is an alternative to surgical myectomy, but after initial enthusiasm, randomized controlled trials reported less favorable results, with incomplete gradient reduction and a lack of sustained symptomatic improvement. A second alternative to surgery is the more recently developed alcohol septal ablation technique. This technique involves the introduction of alcohol into a target septal perforator branch of the left anterior descending coronary artery for the purpose of producing a myocardial infarction within the proximal ventricular septum.

This procedure, which results in a localized septal infarction, was referred to as nonsurgical septal reduction therapy by Sigwart, who first described the procedure in 1995. Since the introduction of this procedure by Sigwart, a number of other groups have applied and modified this technique with good results. Perhaps the most important modification has been the use of myocardial contrast echocardiography to delineate the vascular distribution of the individual septal perforator branches of the left anterior descending coronary artery. In fact, the use of contrast echocardiography is paramount to the success of this procedure.

TTE is the conventional approach for intra procedural echocardiographic monitoring of transcoryonary ablation of septal hypertrophy for HOCM. Some laboratories prefer TEE because it provides more precise imaging of the subaortic anatomy of the left ventricle than TTE. ICE is a third imaging alternative for use during this procedure.

B. Methods for Guidance

Because the septum is perfused through a number of septal perforators, with significant individual variation and overlap in distribution, exact delineation of the vascular territory of each perforator artery is important to determine the vessel or vessels that should receive the alcohol injection. To determine that the presumed target septal perforator was correctly selected, intra procedural myocardial contrast echocardiography should be performed. After verification of the correct balloon position and the hemodynamic effect of balloon occlusion, 1 to 2 mL of diluted echocardiographic contrast agent followed by a 1-mL to 2-mL saline flush is injected through the
inflated balloon catheter under continuous TTE or TEE. The echocardiographic contrast agent should be diluted with normal saline to optimize myocardial opacification and to minimize attenuation. Details of the dilution vary with the contrast agent used. Agitated radiographic contrast can be used instead of an ultrasound contrast agent (Figure 9).

The optimal target territory of the basal septum should include the color Doppler-estimated area of maximal flow acceleration and the area of systolic anterior motion–septal contact without contrast opacification of any other cardiac structures (Figures 9-11). After myocardial contrast echocardiography confirms that the presumed target septal perforator perfuses the desired region of the basal septum, alcohol can be administered.

If TTE is used, apical 4-chamber and 3-chamber (long-axis) views should be used. These views may be supplemented with parasternal long-axis and short-axis views. If TEE is used, the apical 4-chamber view (at 0°) and the longitudinal view (usually 120°-130°) should be used. These views may be supplemented by the transgastric short-axis view to help ensure that no erroneous perfusion of the papillary muscles occurs. The deep transgastric view, which resembles an apical 4-chamber transthoracic view, is useful for measuring the intracavitary gradient with TEE.

C. Immediate Assessment of Results

Intraprocedural echocardiography is also useful for evaluating the results of the procedure in the catheterization laboratory. The region of the basal septum, which is infarcted by the infused alcohol, is typically intensely echo dense. In addition, this region of the septum should have reduced thickening and contractility. There should also be resolution or improvement of the degree of systolic anterior motion of the anterior mitral leaflet and usually reduction in the degree of MR. In addition, there should be elimination or reduction of the intracavitary gradient. This is readily measured by TTE and can often be measured by TEE with a deep transgastric view or midesophageal long-axis view.

D. Outcome Data

Several studies have suggested a favorable impact of echocardiographic monitoring during this procedure. Echocardiographic monitoring of percutaneous transluminal septal myocardial infarction (PTSIMI) with ultrasound contrast can be used to confirm the delivery of alcohol to the appropriate location and to detect complications such as perforation or intracavitary gradient.