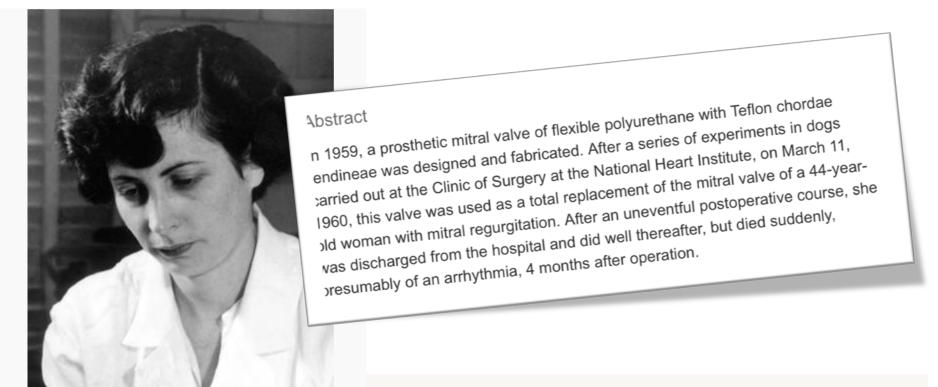
Echocardiographic Evaluation of Prosthetic Valves


Dr. Myla Gloria Salazar - Supe

The 1st valve replacement in 1960

It will work: The first successful mitral valve replacement *

Nina S. Braunwald, MD 📥

There is no perfect valve

"they have introduced other, new problems into clinical medicine, so that in effect, the **patient is exchanging one disease process for another**"

Basic Principles

- By their design, almost all replacement valves are obstructive compared with normal native valves
- Most mechanical valves and many biologic valves are associated with trivial or mild transprosthetic regurgitation (physiologic regurgitation)
- Because of shielding and artifacts, insonation of the valve esp regurgitant jets may be difficult and requires multiple angulations of the probe and the use of off-axis view

Normal Values for Implanted Aortic Valves

AORTIC VALVES	SIZE (mm)	PEAK GRADIENT (mm Hg)	MEAN GRADIENT (mm Hg)	EFFECTIVE ORIFICE AREA (cm²)
Carpentier-Edwards Pericardial Stented bovine pericardial	19 21 23 25	32.1 ± 3.4 25.7 ± 9.9 21.7 ± 8.6 16.5 ± 5.4	24.2 ± 8.6 20.3 ± 9.1 13.0 ± 5.3 9.0 ± 2.3	1.2 ± 0.3 1.5 ± 0.4 1.8 ± 0.3
Carpentier-Edwards Standard Stented porcine	19 21 23 25 27 29	$\begin{array}{c} 43.5 \pm 12.7 \\ 27.7 \pm 7.6 \\ 28.9 \pm 7.5 \\ 24.0 \pm 7.1 \\ 22.1 \pm 8.2 \end{array}$	25.6 ± 8.0 17.3 ± 6.2 16.1 ± 6.2 12.9 ± 4.6 12.1 ± 5.5 9.9 ± 2.9	$\begin{array}{c} 0.9 \pm 0.2 \\ 1.5 \pm 0.3 \\ 1.7 \pm 0.5 \\ 1.9 \pm 0.5 \\ 2.3 \pm 0.6 \\ 2.8 \pm 0.5 \end{array}$
Hancock Stented porcine	21 23 25	18.0 ± 6.0 16.0 ± 2.0 15.0 ± 3.0	12.0 ± 2.0 11.0 ± 2.0 10.0 ± 3.0	
Hancock II Stented porcine	21 23 25 29	34.0 ± 13.0 22.0 ± 5.3 16.2 ± 1.5	14.8 ± 4.1 16.6 ± 8.5 10.8 ± 2.8 8.2 ± 1.7	1.3 ± 0.4 1.3 ± 0.4 1.6 ± 0.4 1.6 ± 0.2
Medtronic Mosaic Stented porcine	21 23 25 27 29	23.8 ± 11.0 22.5 ± 10.0	14.2 ± 5.0 13.7 ± 4.8 11.7 ± 5.1 10.4 ± 4.3 11.1 ± 4.3	$\begin{array}{c} 1.4 \pm 0.4 \\ 1.5 \pm 0.4 \\ 1.8 \pm 0.5 \\ 1.9 \pm 0.1 \\ 2.1 \pm 0.2 \end{array}$
Medtronic-Hall Single tilting disc	20 21 23 25 27	$\begin{array}{c} 34.4 \pm 13.1 \\ 26.9 \pm 10.5 \\ 26.9 \pm 8.9 \\ 17.1 \pm 7.0 \\ 18.9 \pm 9.7 \end{array}$	$\begin{array}{c} 17.1 \pm 5.3 \\ 14.1 \pm 5.9 \\ 13.5 \pm 4.8 \\ 9.5 \pm 4.3 \\ 8.7 \pm 5.6 \end{array}$	$\begin{array}{c} 1.2 \pm 0.5 \\ 1.1 \pm 0.2 \\ 1.4 \pm 0.4 \\ 1.5 \pm 0.5 \\ 1.9 \pm 0.2 \end{array}$
St. Jude Medical Standard <i>Bileaflet</i>	19 21 23 25 27 29	$\begin{array}{c} 42.0 \pm 10.0 \\ 25.7 \pm 9.5 \\ 21.8 \pm 7.5 \\ 18.9 \pm 7.3 \\ 13.7 \pm 4.2 \\ 13.5 \pm 5.8 \end{array}$	$24.5 \pm 5.8 \\ 15.2 \pm 5.0 \\ 13.4 \pm 5.6 \\ 11.0 \pm 5.3 \\ 8.4 \pm 3.4 \\ 7.0 \pm 1.7 \\ \end{array}$	$\begin{array}{c} 1.5 \pm 0.1 \\ 1.4 \pm 0.4 \\ 1.6 \pm 0.4 \\ 1.9 \pm 0.5 \\ 2.5 \pm 0.4 \\ 2.8 \pm 0.5 \end{array}$

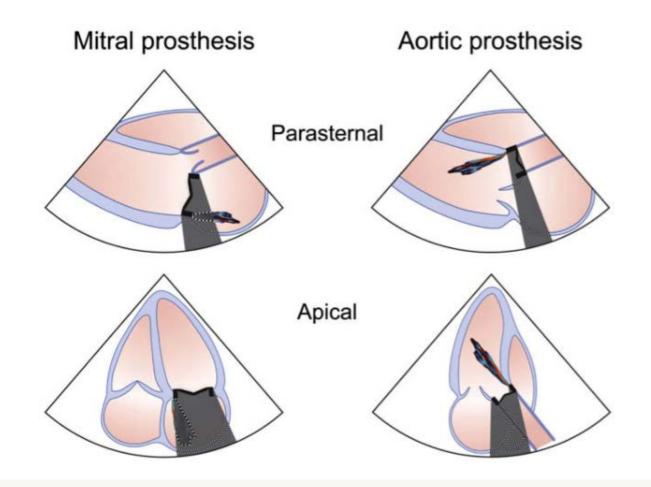
Normal Values for Implanted Mitral Valves

MITRAL VALVES	SIZE (mm)	GRADIENT (mm Hg)	GRADIENT (mm Hg)	PEAK VELOCITY (m/sec)	PRESSURE HALF-TIME (msec)	ORIFICE AREA (cm²)
Carpentier-Edwards Stented bioprosthesis	27 29 31 33		6 ± 2 4.7 ± 2 4.4 ± 2 6 ± 3	1.7 ± 0.3 1.76 ± 0.27 1.54 ± 0.15	98 ± 28 92 ± 14 92 ± 19 93 ± 12	
Carpentier-Edwards Pericardial Stented bioprosthesis	27 29 31 33		3.6 5.25 ± 2.36 4.05 ± 0.83 1	1.6 1.67 ± 0.3 1.53 ± 0.1 0.8	100 110 ± 15 90 ± 11 80	
Hancock I or not specified Stented bioprosthesis	27 29 31 33	10 ± 4 7 ± 3 4 ± 0.86 3 ± 2	5 ± 2 2.46 ± 0.79 4.86 ± 1.69 3.87 ± 2		115 ± 20 95 ± 17 90 ± 12	$\begin{array}{c} 1.3 \pm 0.8 \\ 1.5 \pm 0.2 \\ 1.6 \pm 0.2 \\ 1.9 \pm 0.2 \end{array}$
Hancock II Stented bioprosthesis	27 29 31 33					$\begin{array}{c} 2.21 \pm 0.14 \\ 2.77 \pm 0.11 \\ 2.84 \pm 0.1 \\ 3.15 \pm 0.22 \end{array}$
Medtronic-Hall Tilting disc	27 29 31			1.4 1.57 ± 0.1 1.45 ± 0.12	78 69 ± 15 77 ± 17	
St. Jude Medical <i>Bileaflet</i>	23 25 27 29	11 ± 4 10 ± 3	4 2.5 ± 1 5 ± 1.82 4.15 ± 1.8	1.5 1.34 ± 1.13 1.61 ± 0.29 1.57 ± 0.29	160 75 ± 4 75 ± 10 85 ± 10	1 1.35 ± 0.17 1.67 ± 0.17 1.75 ± 0.24

Basic Principles

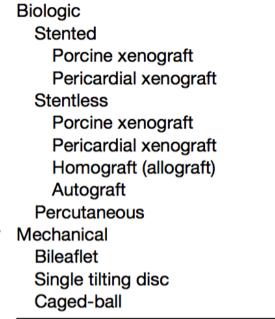
- By their design, almost all replacement valves are obstructive compared with normal native valves
- Most mechanical valves and many biologic valves are associated with trivial or mild transprosthetic regurgitation (physiologic regurgitation)
- Because of shielding and artifacts, insonation of the valve esp regurgitant jets may be difficult and requires multiple angulations of the probe and the use of off-axis view

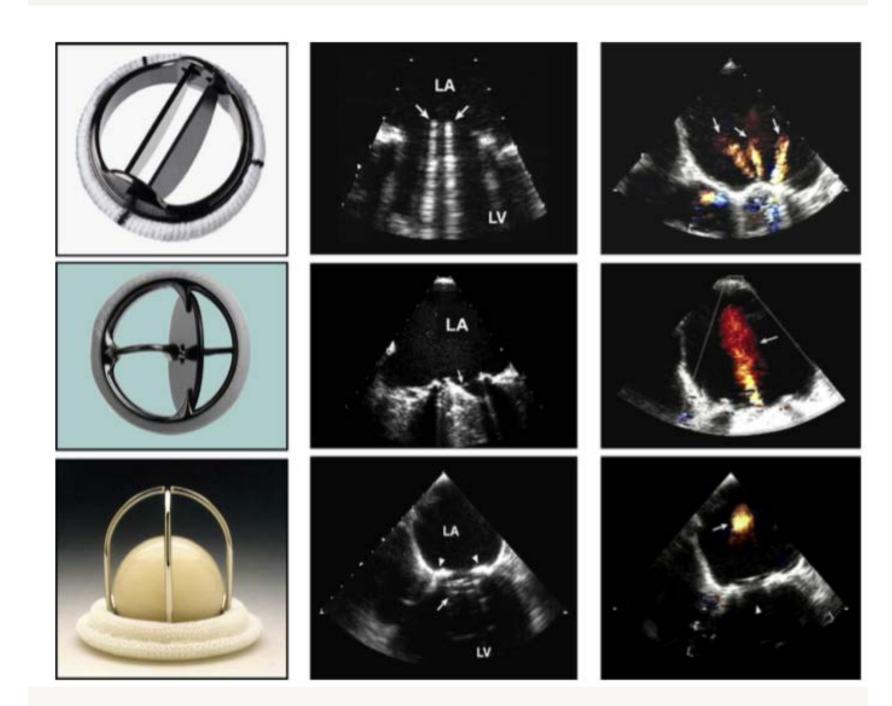
Physiologic Regurgitation


- Washing jets to prevent thrombus formation
- **1**0-15%
- Jets low in momentum
 - homogeneous in color,
 - aliasing mostly confined to the base of the jet.

Basic Principles

- By their design, almost all replacement valves are obstructive compared with normal native valves
- Most mechanical valves and many biologic valves are associated with trivial or mild transprosthetic regurgitation (physiologic regurgitation)
- Because of shielding and artifacts, insonation of the valve esp. regurgitant jets may be difficult and requires multiple angulations of the probe and the use of off-axis view


Shadowing



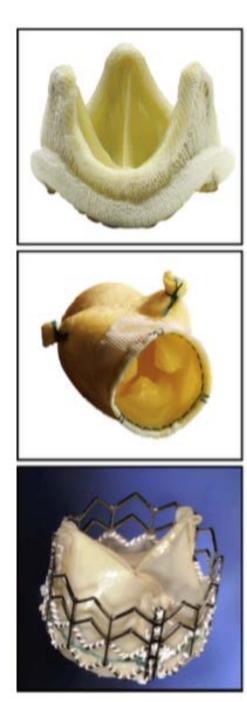
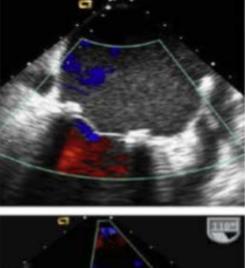
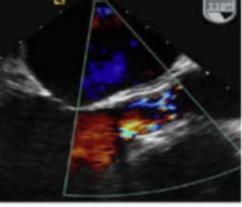

Types of Prosthetic Valves

 Table 1
 Types of prosthetic heart valves





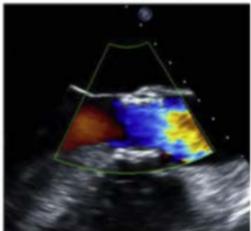
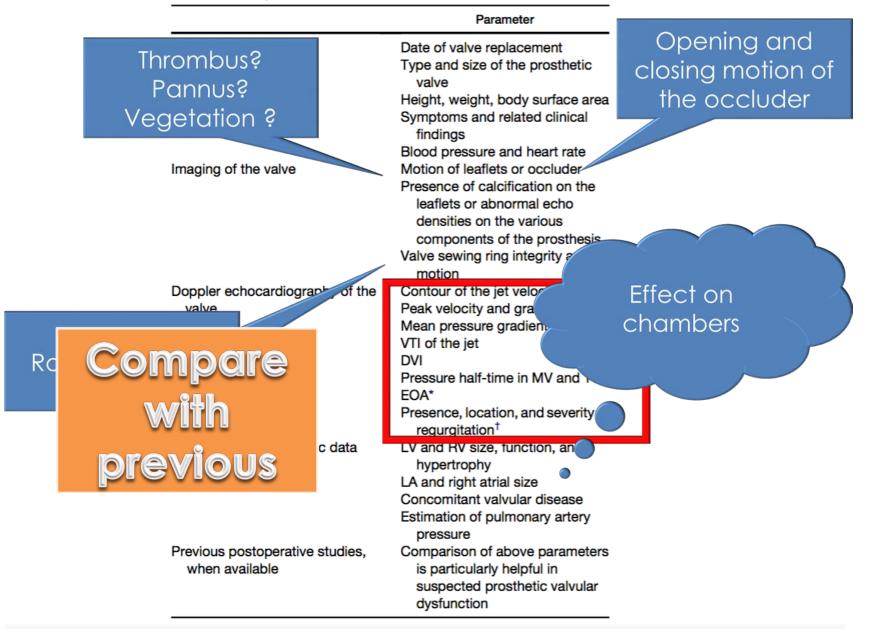


Table 2 Essential parameters in the comprehensive evaluation of prosthetic valve function

	Parameter	
Clinical information	Date of valve replacement	
	Type and size of the prosthetic valve	
		-
	Height, weight, body surface area Symptoms and related clinical	he
	findings	CC
	Blood pressure and heart rate	fo
Imaging of the valve	Motion of leaflets or occluder	SU
inaging of the valve	Presence of calcification on the	po
	leaflets or abnormal echo	in
	densities on the various	pr
	components of the prosthesis	be
	Valve sewing ring integrity and	gr
	motion	-
Doppler echocardiography of the	Contour of the jet velocity signal	de
valve	Peak velocity and gradient	di
	Mean pressure gradient	1
	VTI of the jet	
	DVI	
	Pressure half-time in MV and TV.	
	EOA*	
	Presence, location, and severity of regurgitation [†]	
Other echocardiographic data	LV and RV size, function, and	
	hypertrophy	
	LA and right atrial size	
	Concomitant valvular disease	
	Estimation of pulmonary artery	
	pressure	
Previous postoperative studies,	Comparison of above parameters	
when available	is particularly helpful in	
	suspected prosthetic valvular dysfunction	

heart rate of the cardiac cycles used for Doppler measurements is particularly **important in mitral and tricuspid prosthetic valves**, because the mean gradient is dependent on the diastolic filling period.

Valve Size is not equal to EOA



Bioprosthetic valve

Mechanical valve

Table 2 Essential parameters in the comprehensive evaluation of prosthetic valve function

Doppler Echocardiography

Pressure Gradient

■ Simplified Bernoulli equation: 4V²

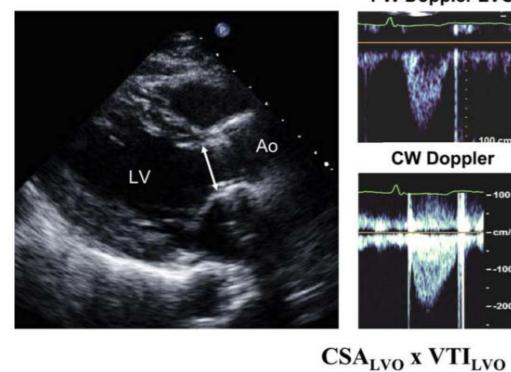
Effective Orifice Area

- Continuity equation: EOA = stroke volume / VTI Prv
- Better index of valve function than gradient alone

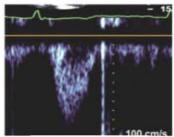
Dimensionless Index (DVI) = ratio of velocity proximal to the valve, to the velocity through the valve

Doppler Echocardiography

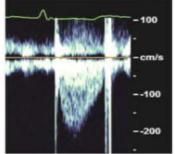
Pressure Gradient


■ Simplified Bernoulli equation: 4V²

Effective Orifice Area

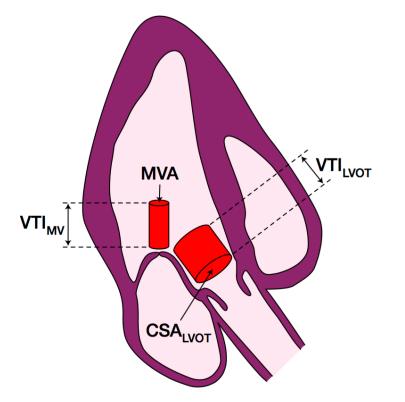

- Continuity equation: EOA = stroke volume / VTI Prv
- Better index of valve function than gradient alone

Dimensionless Index (DVI) = ratio of velocity proximal to the valve, to the velocity through the valve


Effective Orifice Area

PW Doppler LVO

CW Doppler


Effective Orifice Area =

VTI_{JET}

Pressure Half Time

- not appropriate to use the pressure half-time formula (220/pressure half-time) to estimate orifice area in prosthetic valves.
- valid only for moderate or severe stenoses (< 1.5 cm²).
- For larger value areas, PHT reflects <u>atrial</u> and <u>LV</u> <u>compliance</u> characteristics and <u>loading conditions</u> and has no relation to value area.

Mitral Valve Continuity Equation

(Equation 12.8)

$$MVA = \frac{CSA_{LVOT} \times VTI_{LVOT}}{VTI_{MV}}$$

- where MVA = mitral value area (cm²)
 - $CSA_{LVOT} = cross-sectional area of left ventricular$ outflow tract (cm²)
 - VTI_{LVOT} = velocity time integral through the left ventricular outflow tract (cm)
 - VTI_{MV} = velocity time integral across the mitral valve (cm)

Doppler Echocardiography

Pressure Gradient

■ Simplified Bernoulli equation: 4V²

Effective Orifice Area

- Continuity equation: EOA = stroke volume / VTI prv
- Better index of valve function than gradient alone

Dimensionless Index (DVI) = ratio of velocity proximal to the valve, to the velocity through the valve

Dimensionless Valve Index (DVI)

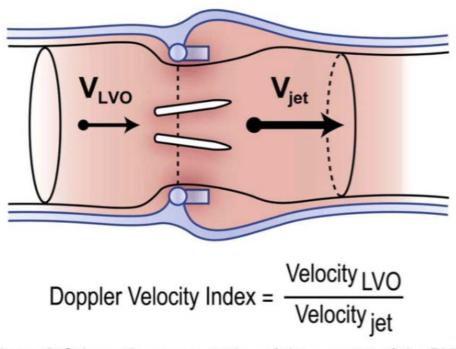
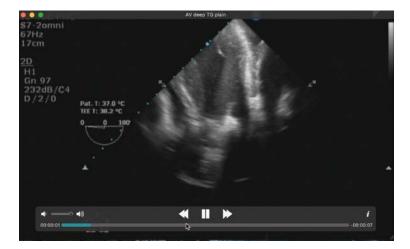
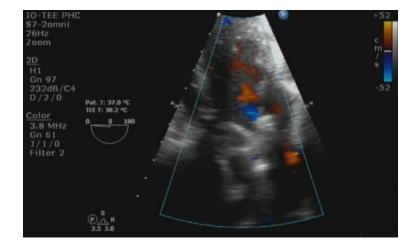


Figure 9 Schematic representation of the concept of the DVI. Velocity across the prosthesis is accelerated through the jet from the LVO tract. DVI is the ratio velocity in the LVO (V_{ivo}) to that of the jet (V_{jet}).

Early and Late Complications of Prosthetic Valves


PPM


Geometric mismatch Dehiscence Primary failure Thrombosis and thromboembolism Pannus formation Pseudoaneurysm formation Endocarditis Hemolysis

Normal Mechanical Prosthesis at Aortic Position

Normal Bi-leaflet Mechanical Aortic Valve (TEE)

Stented Bioprosthetic Mitral Valve

Prosthetic Valve Obstruction

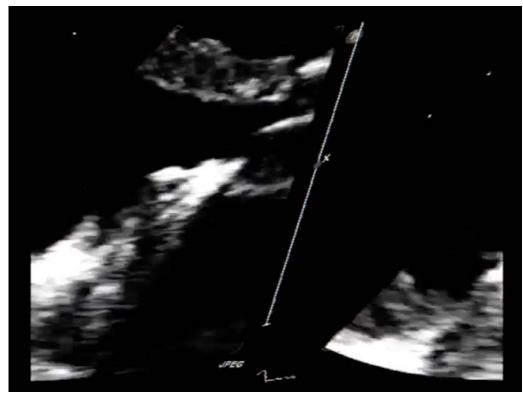
- Mechanical Valves: Thrombus or Pannus
- Bioprosthetic: structural valve degeneration (SVD)
 - (Abnormal leaflet morphology / mobility)
 - Increased gradient for valve subtype and size
 - Decreased EOA and DVI
 - Significant deviation from baseline study

#Importance of "finger printing" iEOA and DVI typically unchanged compared to baseline

Prosthetic Valve Obstruction: Thrombus

Systole: both leaflets doesn't close fully

High velocity flow through single orifice



Diastole: left disc opens fully, right disc immobilized

Elevated transmitral gradient = 11.2 mmHg

Abnormal Mechanical Valve at Mitral Position

Decreased occluder motion and thrombus at the LV side of the prosthesis

Pre- & post-thrombolysis of SJM mitral valve

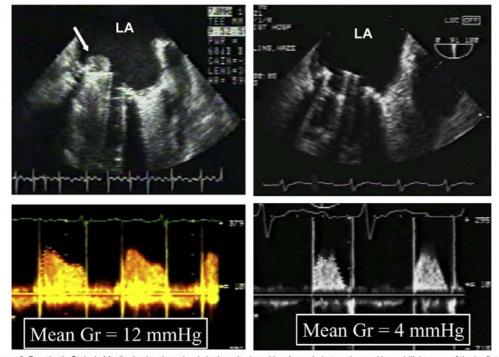
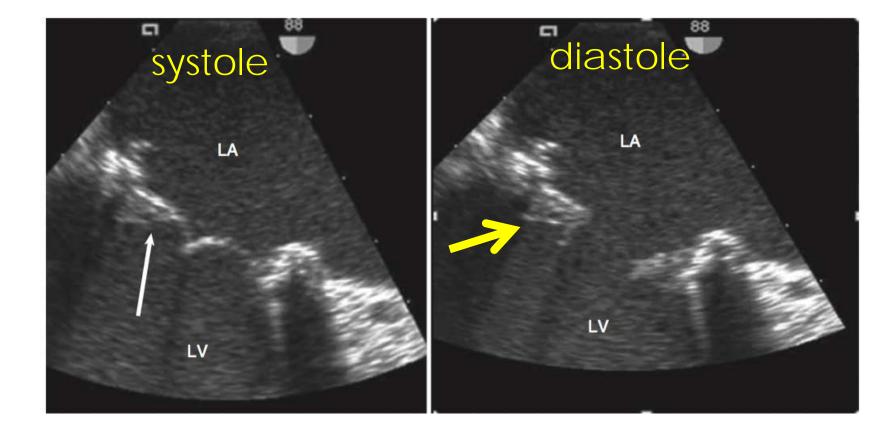



Figure 6 Prosthetic St Jude Medical valve thrombosis in the mitral position (arrow) obstructing and immobilizing one of the leaflets of the valve. After thrombolysis, leaflet mobility is restored, and the mean gradient (Gr) is significantly decreased. LA, Left atrium.

Pannus Formation in Mechanical Valve

Pannus Ingrowth Mitral Bioprosthesis

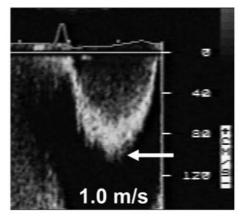

Pannus Bioprosthetic Valve

Elevated gradients across a bioprosthetic mitral valve

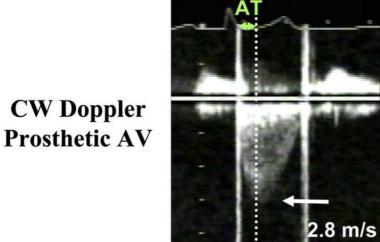
Pannus by TEE (echogenic area on the atrial side of the prosthesis)

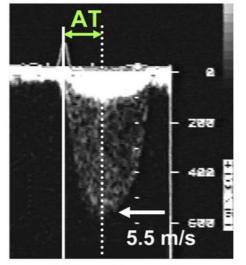
Pannus formation

Evaluation of Prosthetic Valves by Location


Table 4 Doppler echocardiographic evaluation of prosthetic aortic valves

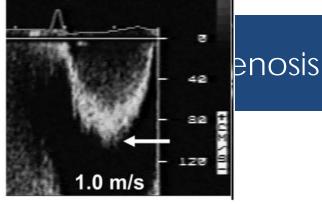
	Parameter
Doppler echocardiography of	Peak velocity/gradient
the valve	Mean gradient
	Contour of the jet velocity; AT
	DVI
	EOA
	Presence, location, and severity of regurgitation
Pertinent cardiac chambers	LV size, function, and hypertrophy


Normal


1.1 m/s

Obstructed

Pulsed Doppler LVO



MG = 22 mmHg DVI = 0.4 AT = 75 ms

MG = 80 mmHg DVI = 0.18 AT = 180 ms

Obstructed

Doppler parameters of p

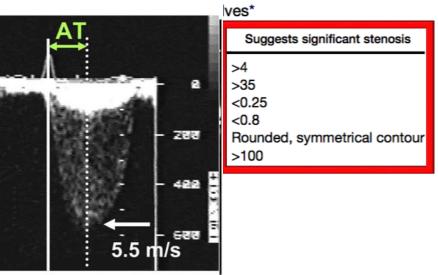


Table 5 Doppler parameters of prosthetic aortic valve function in me

Parameter	Normal
Peak velocity (m/s) [†]	<3
Mean gradient (mm Hg) [†]	<20
DVI	≥0.30
EOA (cm ²)	>1.2
Contour of the jet velocity through the PrAV	Triangular, early peaking
AT (ms)	<80

PrAV, Prosthetic aortic valve.

*In conditions of normal or near normal stroke volume (50-70 mL) through the †These parameters are more affected by flow, including concomitant AR.

MG = 80 mmHg DVI = 0.18 AT = 180 ms

Inday – 41 year old female

Ht 149 cm Wt 53 kg BSA 1.46 m2

Concentric LVH LVMI = 119 gm/2, RWT = 0.53, LVEF 74%

```
Aortic root = 2.8 cm
LVOT dia = 2.1 cm
LVOT VTI = 26.7
Ao VTI = 98.1
DVI = 0.27
EOA = 0.94 cm2
iEOA = 0.64
MVG = 42 mmHg
PIG = 89 mmg
SPAP = 33 mmHg
```


Prosthesis Patient Mismatch

- No detectable structural abnormality of the PV leaflets / occluders
- Normal EOA and DVI for subtype
- iEOA <u><</u> 0.85 **(0.64)**

Consequences of PPM

- Worse hemodynamics
- Less regression of LVH (and pulmonary HPN)
- Worse functional class, exercise capacity, and quality of life
- More cardiac events
- Lower survival

Indexed EOA is the only parameter shown to have any correlation with postoperative gradients &/or outcomes in prosthetic valve mismatch

Determinants of Mismatch

- Iarger BSA higher cardiac output requirements
- older age
- smaller prosthesis size (\leq size19)
- valvular stenosis as the predominant lesion before the operation

Prevention of PPM

STEP 1: Calculate BSA = 1.64

reference values for EOA

 Table 1. Three Easy Steps to Avoid Prosthesis-Patient Mismatch

Step I: Calculate the patient's body surface (BSA) area using the rmula:

 $BSA = ([Weight_{kg}]^{0.425} \times [height_{cm}]^{0.725}) \times 0.007184$

Step II: Determine the minimal requirement for prosthetic valve effective orifice area (EOA) to avoid prosthesis-patient mismatch.

Patient BSA (m ²)	Minimal Valve EOA (cm ²) for Indexed EOA >0.85 cm ² /m ² (Ideal)	Minimal Valve EOA (cm ²) for Indexed EOA >0.80 cm ² /m ²	Minimal Valve EOA (cm ²) for Indexed EOA >0.75 cm ² /m ²
1.30	1.11	1.04	0.98
1.35	1.15	1.08	1.01
1.40	1.20	1.12	1.05
1.45	1.23	1.16	1.09
1.50	1.28	1.20	1.13
	1.32	1.24	1.16
		1.28	1.20
		1.32	1.24
			1.28
			1.31
			1.35
			1.39
			1.43
			1.46
			1.50
			1.54
			1.58
			1.61
			1.65
			1.69
			1.73
			1.76
			1.80
			1.84
2.30	2.13	2.00	1.88
	(m ²) 1.30 1.35 1.40 1.45	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EOA (cm ²) for Indexed EOA >0.85 cm ² /m ² Minimal Valve EOA (cm ²) for Indexed EOA >0.80 cm ² /m ² 1.301.111.041.351.151.081.401.201.121.451.231.161.501.281.201.551.321.241.601.361.281.651.401.321.701.451.361.751.491.401.801.531.441.851.571.481.901.621.521.951.661.562.001.701.602.051.741.642.101.791.682.151.831.722.201.871.762.251.911.802.301.961.842.402.041.922.452.081.96

/

Step III: Choose a prosthesis using reference values for EOA of different types and sizes of prostheses (see Table 2).

		EOAi	by Prost	nesis size	(mm)	
Prosthesis size (mm)	19	21	23	25	27	29
Average EOA (cm ²)	1.1	1.3	1.5	1.8	2.3	2.7
BSA (m ²)						
0.6	1.83	2.17	2.50	3.00	3.83	4.50
0.7	1.57	1.86	2.14	2.57	3.29	3.86
0.8	1.38	1.63	1.88	2.25	2.88	3.38
0.9	1.22	1.44	1.67	2.00	2.56	3.00
1	1.10	1.30	1.50	1.80	2.30	2.70
1.1	1.00	1.18	1.36	1.64	2.09	2.45
1.2	0.92	1.08	1.25	1.50	1.92	2.25
1.3	0.85	1.00	1.15	1.38	1.77	2.08
1.4	0.79	0.93	1.07	1.29	1.64	1.93
1.5	0.73	0.87	1.00	1.20	1.53	1.80
1.6	0.49	0.88	0.88	0.88	0.88	1.69
1.7	0.65	0.76	0.88	1.06	1.35	1.59
1.8	0.61	0.72	0.83	1.00	1.28	1.50
1.9	0.58	0.68	0.79	0.95	1.21	1.42
2	0.55	0.65	0.75	0.90	1.15	1.35
2.1	0.52	0.62	0.71	0.86	1.10	1.29
2.2	0.50	0.59	0.68	0.82	1.05	1.23
2.3	0.48	0.57	0.65	0.78	1.00	1.17
2.4	0.46	0.54	0.63	0.75	0.96	1.13
2.5	0.44	0.52	0.60	0.72	0.92	1.08

STEP 3: Choose prosthesis using reference values for EOA

1.4

JACC Vol. 36, No. 4, 2000 October 2000:1131-41 Pibarot *et al.* 1137 Prosthesis–Patient Mismatch

Table 2. Normal Effective Orifice Areas for the Most Currently Used Prosthetic Valves

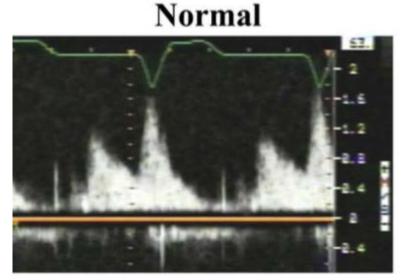
Prosthetic Valve Size (mm)	19	21	23	25	27	29	Reference no.
Stented Bioprosthetic valves							
Medtronic Intact	0.85	1.02 ± 0.10	1.27 ± 0.11	1.40 ± 0.20	1.66 ± 0.16	2.04 ± 0.23	(2)
Medtronic Mosaic	—	1.22 ± 0.27	1.38 ± 0.23	1.65 ± 0.39	1.59 ± 0.33	1.65 ± 0.37	(95)
Hancock II	_	1.18 ± 0.11	1.33 ± 0.16	1.46 ± 0.15	1.55 ± 0.18	1.60 ± 0.15	(3)
Carpentier-Edwards SAV 2650	_	1.16 ± 0.14		_		_	(96)
Carpentier-Edwards Pericardial 2900	1.10	1.30	1.50	1.80	1.60	_	(97)
Stentless bioprosthetic valves							
Medtronic Freestyle	1.15	1.35 ± 0.21	1.48 ± 0.33	2.00 ± 0.39	2.32 ± 0.48	—	(39)
-	1.29 ± 0.19	1.46 ± 0.32	1.79 ± 0.33	2.34 ± 0.69	2.67 ± 0.75	—	(98)
St. Jude Medical Toronto SPV	_	1.30	1.50	1.70	2.00	2.50	(SJM†)
	_		1.49 ± 0.45	1.70 ± 0.78	2.12 ± 0.66	2.70 ± 1.03	(99)
Prima Edwards	0.80	1.10	1.50	1.80	2.30	2.80	(100)
Mechanical valves							
Medtronic Hall	$1.19 \pm 0.21^{*}$	1.34 ± 0.15	_	_	—	—	(96)
Carbomedics Standard	1.00 ± 0.40	1.54 ± 0.31	1.63 ± 0.30	1.98 ± 0.41	2.41 ± 0.46	2.63 ± 0.38	(93)
	1.11 ± 0.13	1.52 ± 0.22	1.84 ± 0.25	2.12 ± 0.31	2.65 ± 0.21	—	(14)
St. Jude Medical Standard	_	1.73 ± 0.38	2.13 ± 0.61	_	—	—	(101)
	—	1.76 ± 0.47	2.11 ± 0.63	—	—	—	(26)
	1.04 ± 0.19	1.38 ± 0.22	1.52 ± 0.26	2.08 ± 0.41	2.65 ± 0.58	3.23 ± 0.30	(13)
St. Jude Medical Hemodynamic Plus	1.30 ± 0.30	—	_	_	—	—	(102)
- *	_	2.01 ± 0.17	_	_	—	—	(101)
	_	2.15 ± 0.29	_	_			(26)

*The label valve size of this valve is 20 mm. †Data provided by St. Jude Medical.

Effective orifice areas are expressed as the mean value \pm SD cm². The effective orifice areas were measured by Doppler echocardiography using the continuity equation in patients with normally functioning prostheses. Some data appear conflicting or are based on limited series and may have to be revised as more data become available.

Evaluation of Prosthetic Valve by Location

Table 7 Echocardiographic and Doppler parameters in evaluation of prosthetic mitral valve function (stenosis or regurgitation)


Doppler echocardiography	Peak early velocity
of the valve	Mean gradient
	Heart rate at the time of Doppler
	Pressure half-time
	DVI*: VTI _{PrMV} /VTI _{LVO}
	EOA*
	Presence, location, and severity of regurgitation [†]
Other pertinent echocardiographic	LV size and function
and Doppler parameters	LA size [‡]
	RV size and function
	Estimation of pulmonary artery
	pressure

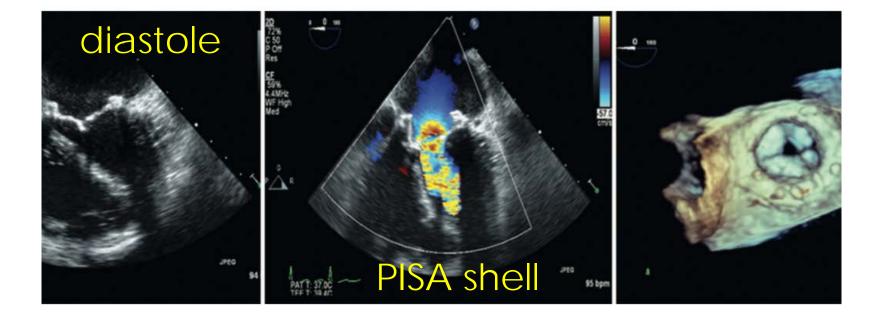
Doppler Evaluation of Mitral Stenosis

Table 8 Doppler parameters of prosthetic mitral valve function

	Normal*	Possible stenosis [‡]	Suggests significant stenosis* [‡]
Peak velocity (m/s) ^{† §} Mean gradient (mm Hg) ^{† §}	<1.9 ≤5	1.9-2.5 6-10	≥2.5 >10
VTI _{PrMv} /VTI _{LVO} ^{† §} EOA (cm ²) PHT (ms)	<2.2 ≥2.0 <130	2.2-2.5 1-2 130-200	>2.5 <1 >200

Doppler Evaluation of Mitral Prosthesis

Peak E = 1.1 m/sMean G = 4 mmHgPHT = 123 ms Peak E = 2.5 m/sMean G = 15 mmHgPHT = 170 ms

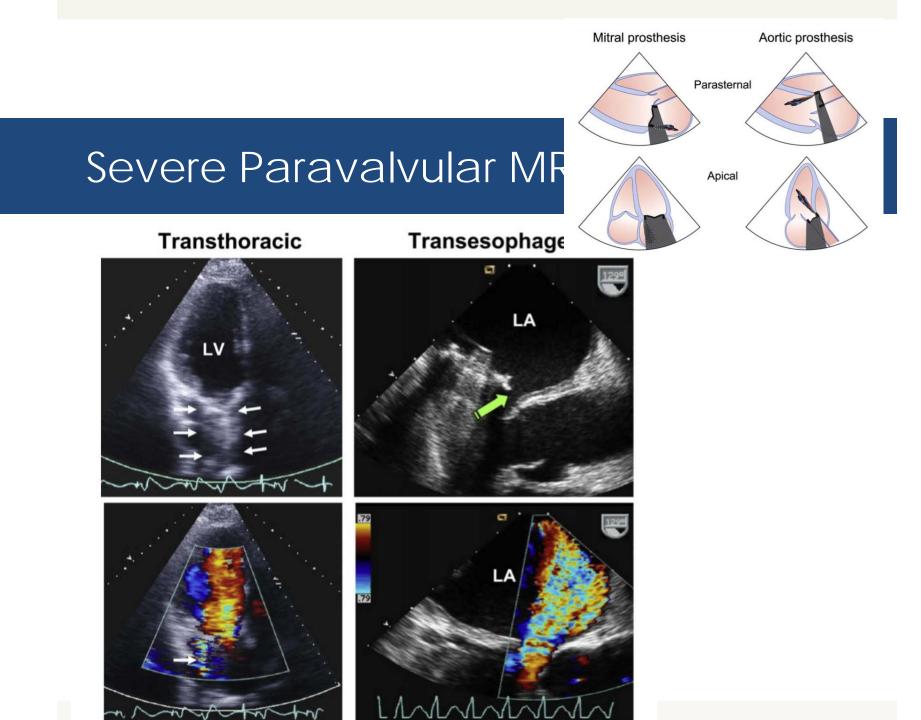

Obstructed

302

200

102

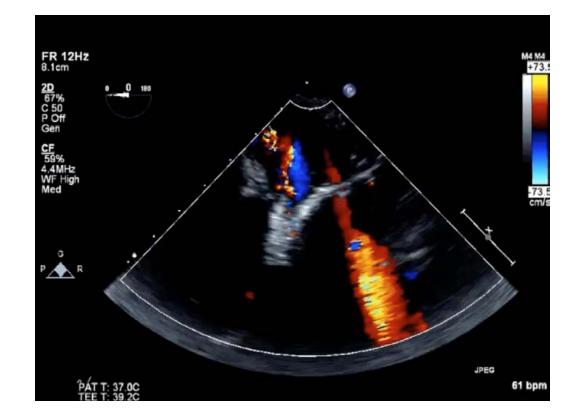
Degenerated Mitral Bioprosthesis



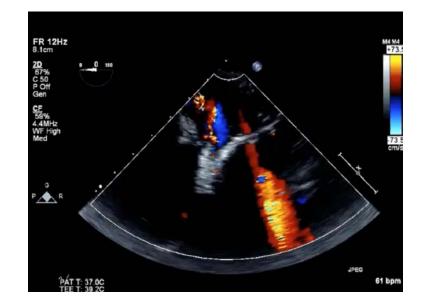
Physiologic vs Pathologic Regurgitation

- Washing jets to prevent thrombus formation
- **1**0-15%
- Jets low in momentum
 - homogeneous in color,
 - aliasing mostly confined to the base of the jet.

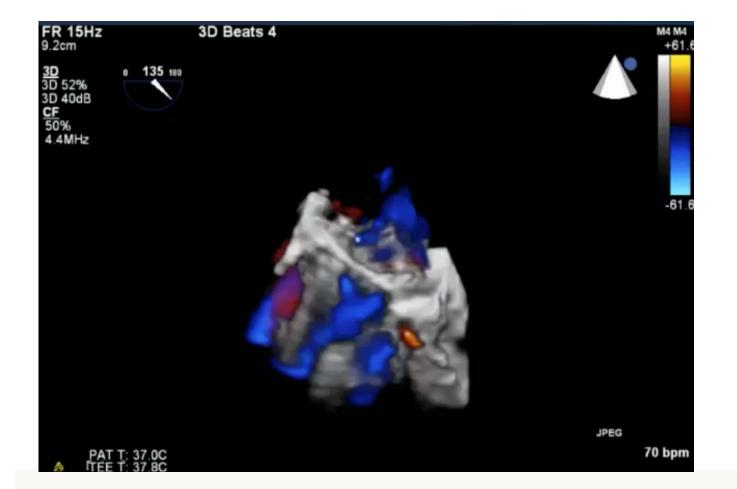
Central

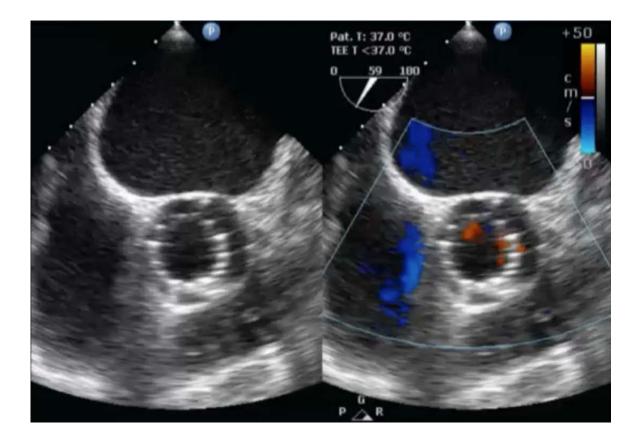

Paravalvular

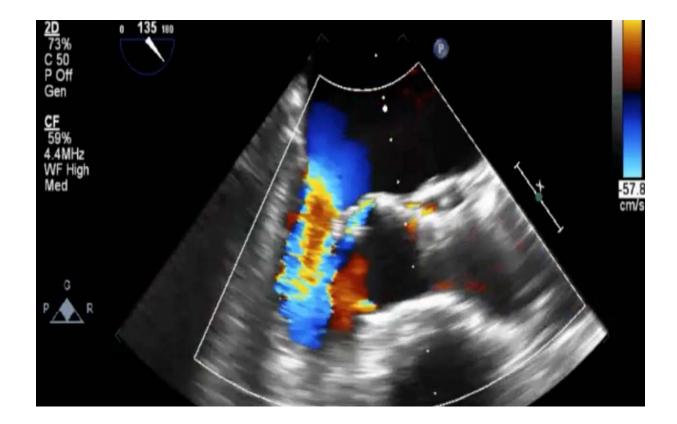
Mild central MR across a bioprosthetic



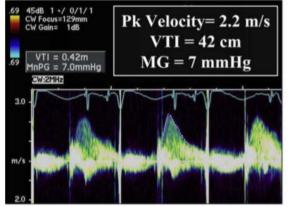
Large paravalvular leak

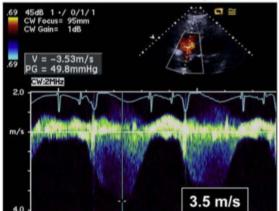


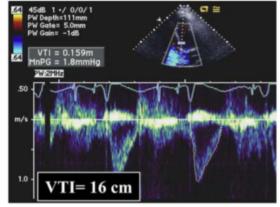

Dehiscence



Paravalvular Leak


Periprosthetic Leak (CoreValve)


Significant Mechanical Mitral Regurgitation


Prosthetic MV Jet

LVOT flow

TR Jet velocity

$$\frac{\text{VTI}_{\text{PrMV}}}{\text{VTI}_{\text{LVO}}} = \frac{42}{16} = 2.6$$

Figure 13 Transthoracic Doppler echocardiographic clues for significant mechanical MR. These recordings are for the same patient

 Table 9 Transthoracic echocardiographic findings suggestive of significant prosthetic MR in mechanical valves with normal pressure half-time

Finding	Sensitivity	Specificity	Comments
 Peak mitral velocity ≥1.9 m/s*	90%	89%	Also consider high flow, PPM
$VTI_{PrMV}/VTI_{LVO} \ge 2.5^*$	89%	91%	Measurement errors increase in atrial fibrillation due to difficulty in matching cardiac cycles; also consider PPM
Mean gradient \geq 5 mmHg*	90%	70%	At physiologic heart rates; also consider high flow, PPM
Maximal TR jet velocity > 3 m/s*	80%	71%	Consider residual postoperative pulmonary hypertension or other causes
LV stroke volume derived by 2D or 3D imaging is >30% higher than systemic stroke volume by Doppler	Moderate sensitivity	Specific	Validation lacking; significant MR is suspected when LV function is normal or hyperdynamic and VTI _{LVO} is <16 cm
Systolic flow convergence seen in the left ventricle toward the prosthesis	Low sensitivity	Specific	Validation lacking; technically challenging to detect readily

Severity of Prosthetic Aortic Valve Regurgitation

Table 6 Parameters for evaluation of the severity of prosthetic aortic valve regurgitation

Parameter	Mild	Moderate	Severe
Valve structure and motion			
Mechanical or bioprosthetic	Usually normal	Abnormal [†]	Abnormal [†]
Structural parameters	-		
LV size	Normal [‡]	Normal or mildly dilated [‡]	Dilated [‡]
Doppler parameters (qualitative or semiquantitative)		-	
Jet width in central jets (% LVO diameter): color*	Narrow (≤25%)	Intermediate (26%-64%)	Large (≥65%)
Jet density: CW Doppler	Incomplete or faint	Dense	Dense
Jet deceleration rate (PHT, ms): CW Doppler§	Slow (>500)	Variable (200-500)	Steep (<200)
LVO flow vs pulmonary flow: PW Doppler	Slightly increased	Intermediate	Greatly increased
Diastolic flow reversal in the descending aorta: PW	Absent or brief early diastolic	Intermediate	Prominent, holodiastolic
Doppler	-		-
Doppler parameters (quantitative)			
Regurgitant volume (mL/beat)	<30	30-59	>60
Regurgitant fraction (%)	<30	30-50	>50

PHT, Pressure half-time.

*Parameter applicable to central jets and is less accurate in eccentric jets; Nyquist limit of 50 to 60 cm/s.

†Abnormal mechanical valves, for example, immobile occluder (valvular regurgitation), dehiscence or rocking (paravalvular regurgitation); abnormal biologic valves, for example, leaflet thickening or prolapse (valvular), dehiscence or rocking (paravalvular regurgitation).

‡Applies to chronic, late postoperative AR in the absence of other etiologies.

§Influenced by LV compliance.

Severity of Mitral Regurgitation

Table 10 Echocardiographic and Doppler criteria for severity of prosthetic MR using findings from TTE and TEE

Parameter	Mild	Moderate	Severe
Structural parameters			
LV size	Normal*	Normal or dilated	Usually dilated [‡]
Prosthetic valve	Usually normal	Abnormal [¶]	Abnormal [¶]
Doppler parameters			
Color flow jet area [#]	Small, central jet (usually <4 cm ² or	Variable	Large central jet (usually >8 cm ² or
	<20% of LA area)		>40% of LA area) or variable size wall-
			impinging jet swirling in left atrium
Flow convergence**	None or minimal	Intermediate	Large
Jet density: CW Doppler	Incomplete or faint	Dense	Dense
Jet contour: CW Doppler	Parabolic	Usually parabolic	Early peaking, triangular
Pulmonary venous flow	Systolic dominance [§]	Systolic blunting§	Systolic flow reversal [†]
Quantitative parameters ^{††}			
VC width (cm) [∥]	<0.3	0.3-0.59	≥0.6
R vol (mL/beat)	<30	30-59	≥60
RF (%)	<30	30-49	≥50
EROA (cm ²)	<0.20	0.20-0.49	≥0.50

THANK YOU FOR YOUR ATTENTION